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Exercise 1 Second quantization and the Schrodinger equation

Let us consider the N-body wave function defined as

1
\I’E(’I"l,...,'l"N) = W

where |E, N) is an N-particles energy eigenstate with eigenvalue E of the Hamiltonian
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a) Show that
1

EVg(ry,...,r = ——(0]p(r1) ... (v lfIE,N. 3
(T ) m< [(r1) ... d(ry)H|E,N) (3)
(1 point)
b) Show that the wave function satisfies the N-particles Schrodinger equation
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(2 points)
Exercise 2 Real Scalar Field
Consider the Klein-Gordon equation for the scalar field ¢(7,t):
m2c?
0,0" ¢ + s »=0, (5)

with m the rest mass.

a) Show that Eq. (5) is the Euler-Lagrange equation of the Lagrange density
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(1 point)



b)

Use the canonically conjugated momentum field II = (1/¢)0¢/0t and show that the
Hamiltonian density takes the form
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(1 point)

Assume a box of volume €2 with periodic boundary conditions. Expand the field ¢ in a
Fourier series

o) = =3 gp(t)e” (s)
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with II; = (1/c)0qz/0t. (2 points)

We now define
. h ~ —jwet ~ T iwet

q(t) = 2o [a,z e "E al . e™F ] : (10)

with the operators Gz obeying the commutation relations [ay, d%] = Op v and [ag, ag] = 0.

Using this definition, bring the Hamiltonian into the form

N 1
H=3 o (a;a,;+§) , (1)
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wp = \ k)2 +m2 >0, (12)

(2 points)

and show that



