WS 2011/12 TPIV: Quantenphysik und statistische Physik

Blatt 09

Vorrechnen des Übungsblattes: Freitag, 13.01. und Montag 16.01.2012

21. Die Maxwell-Boltzmann-Verteilungsfunktion als wahrscheinlichste Verteilung

Sofern wir nur an den Eigenschaften eines Gases im Gleichgewicht interessiert sind, existiert neben dem Zugang über die Boltzmann-Gleichung eine alternative Herleitung der Maxwell-Boltzmann-Verteilungsfunktion im μ -Raum, die in dieser Aufgabe vorgestellt werden soll.

Dabei gehen wir von einem Ensemble isolierter Systeme mit konstanter Energie $\tilde{E} \in [E, E+\Delta]$ aus. Jedes dieser Systeme bestehe aus N unterscheidbaren Teilchen deren Positionen und Impulse durch $\vec{q}=(q_1,\ldots,q_{3N})$ und $\vec{p}=(p_1,\ldots,p_{3N})$ geben sind und die sich in einem endlichen Volumen $V\subset\mathbb{R}^3$ befinden. Es sollen keine äußeren Kräfte auf die Teilchen wirken. Das gesamte Phasenraumvolumen, das den Mikrozuständen (\vec{p},\vec{q}) des Ensembles zur Verfügung steht, sei mit \mathcal{G} bezeichnet. Desweiteren nehmen wir an, dass unser System im Gleichgewicht durch die Dichtefunktion des mikrokanonischen Ensembles (Postulat der gleichen "a priori" Wahrscheinlichkeit)

$$\rho_{\mathrm{mic}}(\vec{p},\vec{q}) = \left\{ \begin{array}{ll} \frac{1}{\Gamma(E)} \ \forall \ (\vec{p},\vec{q}) \in \mathbb{R}^{6N} \ \mathrm{mit} \ E < H(\vec{p},\vec{q}) < E + \Delta \\ 0 \ \mathrm{sonst} \end{array} \right.$$

beschrieben wird ($\Delta \ll E$). Das heißt, alle Mikrozustände (\vec{p}, \vec{q}) des Systems, für die die makroskopische "Nebenbedingung" $E < H(\vec{p}, \vec{q}) < E + \Delta$ gilt, treten im Ensemblemittel gleichwahrscheinlich auf.

Die aus $\rho_{\mathrm{mic}}(\vec{p},\vec{q})$ entsprechend der Aufgabe 17 folgende Einteilchen-Verteilungsfunktion $f(\mathbf{x},\mathbf{p})$ im μ -Raum $(\mathbf{x},\mathbf{p}\in\mathbb{R}^3)$ ist schwer zu berechnen. Aus diesem Grund verfolgen wir in dieser Aufgabe einen alternativen Zugang zur Maxwell-Boltzmann-Verteilung. Zuerst unterteilen wir den für die Teilchen zugänglichen μ -Raum in kleine Gebiete μ_i $(i\in\{1,\ldots K\},K\gg1)$ deren Positionen wir mit $(\mathbf{p}_i,\mathbf{x}_i)$ bezeichnen und deren Volumen $(\Delta p)^3$ ($\Delta q)^3$ sei. Die Anzahl der Teilchen in der i-ten Zelle ist dann durch

$$n_i = \int_{\mu_i} f(\mathbf{x}, \mathbf{p}) \, d^3 p \, d^3 x$$

gegeben und im Grenzfall unendlich kleiner Gebiete μ_i kann die Verteilungsfunktion $f(\mathbf{x},\mathbf{p})$ beliebig nahe durch die Besetzungszahlen n_i angenähert werden. Die Energie eines Teilchens in der i-ten Zelle ist durch $\epsilon_i = \frac{\mathbf{p}_i^2}{2m}$ gegeben (Wechselwirkungsenergie vernachlässigt, da Wechselwirkungsradius $r_0 \ll \Delta q$). Laut Voraussetzung ist unser System isoliert, weshalb die Besetzungszahlen n_i die folgenden Nebenbedingungen erfüllen:

$$\sum_{i=1}^{K} n_i = N \quad \text{und} \quad \sum_{i=1}^{K} n_i \, \epsilon_i = \tilde{E} \,. \tag{1}$$

(a) Angenommen, das Gas befinde sich in einem bestimmten Mikrozustand (\vec{p}, \vec{q}) . Sind dadurch die Werte der einzelnen Besetzungszahlen $n_i \in \mathbb{N}_0$ eindeutig festgelegt? Wird umgekehrt durch eine vorgegebene Besetzung $\{n_i\}$ der Mikrozustand des Gases eindeutig festgelegt? Begründen Sie anhand eines einfachen Beispiels.

(1 Punkt)

(b) Wie viele Mikrozustände existieren zu einer vorgegebenen Besetzung $\{n_i\}$? Begründen Sie, dass das Volumen im Phasenraum $\Omega\{n_i\}\in\mathcal{G}$, das einer bestimmten Besetzung $\{n_i\}$ entspricht, durch den Ausdruck

$$\Omega\{n_i\} = C \cdot \frac{N!}{n_1! \, n_2! \dots n_K!}$$

gegeben ist. Der genaue Wert der von den n_i unabhängigen Proportionalitätskonstanten C ist dabei nicht von Interesse.

(2 Punkte)

(c) Wir nehmen an, dass die gesuchte Verteilungsfunktion $f(\mathbf{x}, \mathbf{p})$ des Gases im Gleichgewicht die *wahrscheinlichste* Verteilungsfunktion ist, d. h. wir gehen davon aus, dass die zu $f(\mathbf{x}, \mathbf{p})$ gehörige Besetzung $\{\bar{n}_i\}$ das größte Phasenraumvolumen in \mathcal{G} einnimmt $(\Omega\{\bar{n}_i\} \geq \Omega\{n_i\}$ für alle Besetzungen $\{n_i\}$, die die Nebenbedingungen (1) erfüllen). Bestimmen Sie das Maximum von $\ln(\Omega\{n_i\})$ unter Berücksichtigung der Nebenbedingungen (1) mit Hilfe der Lagrange-Multiplikatoren und zeigen Sie damit, dass

$$\bar{n}_i = \alpha \cdot e^{-\beta \epsilon_i}$$
. $\alpha, \beta = \text{const.}$.

Betrachten Sie dabei die Besetzungszahlen $\bar{n}_i\gg 1$ als reelle Zahlen und verwenden Sie die Stirlingsche Formel in der niedrigsten Näherung $\ln n!\approx n\ln n-n$. Zeigen Sie insbesondere, dass es sich um ein Maximum von $\ln(\Omega\{n_i\})$ handelt und nicht um eine Minimum.

(3 Punkte)

(d) Leiten Sie aus diesem Ergebnis die Maxwell-Boltzmann-Verteilung

$$f(\mathbf{x}, \mathbf{p}) = \frac{n}{(2\pi \, mkT)^{3/2}} \, e^{-\frac{\mathbf{p}^2}{2mkT}}$$

ab, wobei n=N/V die konstante Teilchendichte bezeichnet. Bestimmen Sie hierbei die Konstanten α und β in Analogie zur Vorlesung über die stationäre Lösung der Boltzmann-Gleichung.

(3 Punkte)

Das TPIV-Team wünscht Ihnen ein frohes Weihnachtsfest und einen guten Rutsch ins neue Jahr!