Universität des Saarlandes Fakultät 7 – Physik und Mechatronik

Fachrichtung 7.1 – Theoretische Physik Prof. Dr. M. Lücke, J. Baltrusch (bis Ende Dez.'13), Dr. M. Bienert (ab Jan.'14) Gebäude E26, Zi. 4.28

Saarbrücken, den 11.12.2013

http://www.qphys.uni-saarland.de/de/index.php/teaching/course/tpi_ii_la

Übungen zur theoretischen Physik I & II

Blatt 9

Aufgabe 28 Teilchen in einem geschwindigkeitsabhängigen Potential

Die Lagrange-Funktion für ein Teilchen in einem verallgemeinerten, geschwindigkeitsabhängigen Potential lautet

$$L(\mathbf{r}, \dot{\mathbf{r}}, t) = \frac{m}{2} \dot{\mathbf{r}}^2 - U(\mathbf{r}, \dot{\mathbf{r}}, t).$$

Für ein Teilchen im elektromagnetischen Feld wird dieses wie folgt angenommen:

$$U(\mathbf{r}, \dot{\mathbf{r}}, t) = q \left(\Phi(\mathbf{r}, t) - \dot{\mathbf{r}} \cdot \frac{1}{c} \mathbf{A}(\mathbf{r}, t) \right). \tag{1}$$

Hierbei sind das skalare Potential $\Phi(\mathbf{r},t)$ und das Vektorpotential $\mathbf{A}(\mathbf{r},t)$ vorgegeben, und q und c sind gegebene Konstanten (Ladung und Lichtgeschwindigkeit). Bestimmen Sie:

- a) Den zu **r** kanonisch konjugierten Impuls **p**,
- b) die Hamilton-Funktion $H(\mathbf{r}, \mathbf{p})$ als Funktion von \mathbf{r} und \mathbf{p} ,
- c) die Hamilton-Gleichungen für $\dot{\mathbf{r}}$ und $\dot{\mathbf{p}}$.
- d) Zeigen Sie $m\ddot{\mathbf{r}} = q\mathbf{E} + \frac{q}{c}\dot{\mathbf{r}} \times \mathbf{B}$, mit $\mathbf{B} = \nabla \times \mathbf{A}$ und $\mathbf{E} = -\nabla \Phi \frac{1}{c}\frac{\partial \mathbf{A}}{\partial t}$.

Hinweis: Sie können zur Vereinfachung der Rechnung die Konstanten c und q gleich eins setzen. Für Teilaufgabe d) drücken Sie die totale Ableitung des Vektorpotentials, $\dot{\mathbf{A}} = \frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t}$ durch partielle Ableitungen aus. (35 Prozent)

Aufgabe 29 Relativistisches Teilchen

Die Lagrange-Funktion eines freien relativistischen Teilchens der Ruhemasse m lautet

$$L(\mathbf{\dot{r}}) = -m c^2 \sqrt{1 - v^2/c^2}$$
,

wobei $v = |\dot{\mathbf{r}}|$ die Teilchen- und c die Lichtgeschwindigkeit ist.

- a) Bestimmen Sie den Impuls **p**.
- b) Ermitteln Sie die Hamilton-Funktion $H(\mathbf{p})$.
- c) Zeigen Sie, dass für freie Teilchen der Masse m=0 die Hamilton-Funktion durch $H(\mathbf{p})=cp$ gegeben ist, wobei $p=|\mathbf{p}|$ der Impulsbetrag ist.
- d) Zeigen Sie, dass Lagrange- und Hamilton-Funktion für kleine Geschwindigkeiten $v \ll c$, bzw. kleine Impulse $|\mathbf{p}| \ll mc$ die klassische Form annehmen.

(35 Prozent)

Aufgabe 30 Massenerhaltung bei Rohrgabelung

Eine Flüssigkeit strömt stationär durch ein Rohr mit Querschnittsfläche F_1 , das sich in zwei Rohre mit Querschnittsflächen F_2 und F_3 teilt. Wie lautet die Beziehung zwischen den Strömungsgeschwindigkeiten unter der Annahme, dass Dichte und Geschwindigkeiten in genügender Entfernung von der Verzweigung konstant sind? (10 PROZENT)

Aufgabe 31 Vektorfelder

Berechnen Sie die Divergenz und Rotation für folgende Felder und skizzieren Sie diese.

- a) Couette-Strömungsfeld $\mathbf{u}(\mathbf{r}) = (y, 0, 0) u_0/h$, mit u_0 und h konstant,
- b) Elektrisches Feld $\mathbf{E}(r) = E_0 f(r) \mathbf{r}$ einer homogen geladenen Kugel mit Radius a, wobei

$$f(r) = \begin{cases} 1/a, & \text{für } 0 \le r \le a, \\ a^2/r^3 & \text{für } r \ge a. \end{cases}$$

(20 Prozent)