Universität des Saarlandes Fakultät 7 – Physik und Mechatronik

Fachrichtung 7.1 - Theoretische Physik
Prof. Dr. M. Lücke,
J. Baltrusch (bis Ende Dez.'13),
Dr. M. Bienert (ab Jan.'14)
Gebäude E26, Zi. 4.28
http://www.qphys.uni-saarland.de/de/index.
php/teaching/course/tpi_ii_la

Saarbrücken, den 22.1.2014

Übungen zur theoretischen Physik I & II

Blatt 13

Aufgabe 41 Pakete ebener monochromatischer Wellen

Man betrachte Pakete ebener monochromatischer Wellen in einer Dimension, die zur Zeit t=0 die Form $\psi(x)=e^{ik_0x}f(x)$ haben. Berechnen Sie $A(k)=\int\limits_{-\infty}^{+\infty}dx\ e^{-ikx}\psi(x)$ und skizzieren Sie Re $\psi(x)$ und A(k) für $f(x)=e^{-\kappa^2x^2/2}$.

Ein Maß für die Breite der Kurven ist $\langle (\Delta x)^2 \rangle = \langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2$ mit

$$\langle x^n \rangle = rac{\int dx \; x^n |\psi(x)|^2}{\int dx \; |\psi(x)|^2} \qquad \mathrm{und} \qquad \langle k^n \rangle = rac{\int dk \; k^n |A(k)|^2}{\int dk \; |A(k)|^2}.$$

Prüfen Sie die Unschärferelation $\langle (\Delta x)^2 \rangle \langle (\Delta k)^2 \rangle \ge \frac{1}{4}$ am Beispiel $f(x) = e^{-\kappa |x|/2}$. (40 Prozent)

Aufgabe 42 Überlagerung ebener Wellen

Man betrachte zwei ebene, in z-Richtung polarisierte elektromagnetische Wellen

$$\mathbf{E}_1 = \mathbf{E}_0 e^{i(k_1 x - \omega_1 t)} \quad \text{und} \quad \mathbf{E}_2 = \mathbf{E}_0 e^{i(k_2 y - \omega_2 t)} \quad \text{mit} \quad \mathbf{E}_0 = E_0 \mathbf{e}_z \quad \text{und} \quad E_0 \in \mathbb{R}.$$

- a) Wie lautet das gesamte resultierende (reelle) E- und B-Feld?
- b) Skizzieren Sie für t=0 und $k_1=k_2$ die Konturlinien gleicher elektrischer Feldstärke $|\mathbf{E}(x,y)|$, sowie das Feld \mathbf{B} und den Poynting-Vektor \mathbf{S} als Vektorplots in der x-y-Ebene.

(25 Prozent)

Aufgabe 43 Greenfunktion der Wellengleichung

a) Führen Sie eine Partialbruchzerlegung der beiden Greenfunktionen

$$G(k,\omega\pm i\eta) = \frac{-4\pi c^2}{(\omega\pm i\eta)^2 - c^2 k^2}$$

mit $k=|\mathbf{k}|$ und $\eta>0$ durch. Geben sie die Lage der Polstellen in der ω -Ebene an.

- b) Berechnen Sie die Fouriertransformierte $G_{\pm\eta}(k,t)$ mit Hilfe von Aufgabe 20 d) auf Blatt 6.
- c) Vergleichen Sie die retardierte Greenfunktion $G_{+\eta}(k,t)$ bzw. $G(k,\omega+i\eta)$ mit der dynamischen Suszeptibilität $\chi(t)$ bzw. $\chi(\Omega)$ des gedämpften harmonischen Oszillators.
- d) Bestimmen Sie $G_{\pm}(x,t)$ durch Fouriertransformation von $G_{\pm}(k,t) = \lim_{\eta \to 0} G_{\pm\eta}(k,t)$. Hinweis: Beachten Sie $x = |\mathbf{x}|, k = |\mathbf{k}|$ und benutzen Sie für die **k**-Integration Kugelkoordinaten mit $\mathbf{k} \cdot \mathbf{x} = k x \cos \theta$.

(35 Prozent)