Quantum Optics

Sheet 1

WS 2017/18

Exercise 1 An elastically bound electron

a) Newton's equation of motion for a charged particle of mass m and charge e which is elastically bound to the origin is given by

$$m\ddot{\mathbf{r}} + f\mathbf{r} = 0 \tag{1}$$

where f us the spring constant, ω_0 is the oscillator eigenfrequency with $\omega_0^2 = f/m$ and $\mathbf{r} = \mathbf{r}(t)$ is the position of the particle. Write the energy W of the system and derive the general solution and the period τ of the motion. (1 Point)

b) The energy which is dissipated by the electron is given by

$$S = -\frac{dW}{dt} = \frac{2e^2}{3c^3}\ddot{\mathbf{r}}^2 \tag{2}$$

where c is the speed of light and $\ddot{\mathbf{r}}^2$ is the squared acceleration

$$\overline{\ddot{\mathbf{r}}^2} = \frac{1}{\tau} \int_0^\tau \ddot{\mathbf{r}}^2 dt.$$

Show that the average energy dissipated per period for quasiperiodic motion reads

$$\frac{\overline{dW}}{dt} = -\gamma \overline{W} \tag{3}$$

where we use the definition

$$\overline{A} = \frac{1}{\tau} \int_0^\tau dt A(t). \tag{4}$$

Determine the damping coefficient γ .

c) Assuming quasiperiodic motion, we now include the emitted radiation from the accelerating electron such that the new equation of motion becomes

$$m\ddot{\mathbf{r}} + f\mathbf{r} = \mathcal{R} \tag{5}$$

where \mathcal{R} is the force which gives rise to a change in the total energy.

Find \mathcal{R} using Eq. (2) in terms of $\ddot{\mathbf{r}}$ by multiplying Eq. (5) by $\dot{\mathbf{r}}$. Then using $\mathbf{r} = \mathbf{U}e^{i\omega t}$, where \mathbf{U} is a complex vector, find a compact expression for the frequency of these oscillations. Where the time after which the energy of the emitting atom decreased to 1/e of its initial value is given by

$$T = \gamma^{-1} = 4 \times 10^{-7} s \tag{6}$$

and $\omega_0 = 2\pi \times 10^{14} \text{s}^{-1}$.

(1 Point)

03.11.2017

Exercise 2 A sinusoidal perturbation

Consider a physical system with Hamiltonian \hat{H}_0 such that

$$\hat{H}_0|\phi_n\rangle = E_n|\phi_n\rangle \tag{7}$$

with eigenvalues and eigenvectors E_n and $|\phi_n\rangle$, respectively and $\langle \phi_m | \phi_n \rangle = \delta_{mn}$. At t = 0 a perturbation is applied to the system. Its Hamiltonian now becomes

$$\hat{H}(t) = \hat{H}_0 + \lambda \hat{W}(t) \tag{8}$$

where λ is a real dimensionless parameter much smaller than 1 and $\hat{W}(t)$ is an observable of the same order of magnitude as \hat{H}_0 and which is zero for t < 0. Now assume that $\hat{W}(t)$ has the form

$$\hat{W}(t) = \hat{W}\cos(\omega t) \tag{9}$$

where ω is a constant angular frequency and \hat{W} is a time independent observable.

- a) The system is assumed to be initially in a the stationary state $|\phi_i\rangle$ which is an eigenstate of \hat{H}_0 of eigenvalues E_i . Calculate the state vector $|\psi(t)\rangle$ to first order in λ and then calculate the probability $P_{if}(t) = |\langle \phi_f | \psi(t) \rangle|^2$ of finding the system in another eigenstate $|\phi_f\rangle$ of \hat{H}_0 at time t. (1 Point)
- b) What is the transition probability induced by a constant perturbation? (i.e. $\omega = 0$) (1 Point)
- c) Discuss the validity of the perturbative expansion. (1 Point)