WS 2021/22 TPIV: Quantum physics and statistical physics Blatt 04

8. Binomial distribution

We consider N independent coin tosses with a flipped coin. Heads occur with probability p, tails with probability 1 - p. The probability of finding n times heads after N coin tosses is given by the binomial distribution

$$W_N(n) = \binom{N}{n} p^n (1-p)^{N-n} \tag{1}$$

- (a) Is $W_N(n)$ normalized ?
- (b) Compute $\langle n \rangle$ and $\langle n^2 \rangle$.

(1 Point)

(1 Point)

(c) Show that the kth moment is given by the following formula:

$$\langle n^k \rangle = \left(p \frac{\partial}{\partial p} \right)^k (p+q)^N \bigg|_{q=1-p}$$
 (2)

(1 Point)

(d) Calculate the variance $\operatorname{Var}(n) = \langle (n - \langle n \rangle)^2 \rangle$. How does $\sqrt{\operatorname{Var}(n)} / \langle n \rangle$ scale for size N?

9. Poisson distribution und Stirling formula

As in exercise 8, we consider the binomial distribution. Here we focus on the limiting case of small probabilities of occurrence $p \ll 1$ (condition A) and large numbers of trials $n \ll N$ (condition B). We now want to find an approximation of the binomial distributions in this limiting case. Proceed as follows:

(a) Derive the Stirling formula

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
, für $n \gg 1$ (3)

as the approximation of the factorial for large numbers n. Use the gamma function as a continuous continuation of the factorial.

$$n! = \Gamma(n+1) = \int_0^{+\infty} \mathrm{d}x e^{n\ln(x) - x} \tag{4}$$

and substitute y = x/n. Approximate the remaining integral using the saddle point approximation

$$\int_{a}^{b} \mathrm{d}x e^{nf(x)} \approx \sqrt{\frac{2\pi}{n|f''(x_0)|}} e^{nf(x_0)}, \text{ für } n \gg 1,$$
(5)

for f twice continuously differentiable, arbitrary endpoints a < b, and x_0 the global maximum of f.

(b) Show that
$$(1-p)^{N-n} \approx e^{-Np}$$
.
(1 Point)

(c) Show that
$$N!/(N-n)! \approx N^n$$

(1 Point)

(d) Using the previous part of the exercise, derive the Poisson distribution

$$W_N(n) = \frac{\lambda^n e^{-\lambda}}{n!} \tag{6}$$

as a limiting case of the binomial distribution under conditions A and B, i.e. for a large number of trials and small probabilities of occurrence p, where $\lambda = Np$. Calculate the expectation value and variance of the distribution.

(1 Point)

(e) In a game of roulette, a ball is thrown in each game and falls randomly on a square with numbers 0 to 36, with each number occurring only once. A coup is

a series of 37 games. Calculate the average number of different numbers that are hit during a coup. Do this once using the binomial distribution and once using the Poisson distribution and compare the results obtained.

(1 Point)

10. Properties of paramagnetic systems

Consider a system consisting of a set of N spins $\frac{1}{2}$ in the presence of a z-oriented magnetic field $\vec{B} = B\vec{e_z}$. The Hamiltonian describing the system is then

$$\hat{H} = -\mu_B B \sum_i \hat{\sigma}_i^z,\tag{7}$$

where μ_B is the Bohr magneton and $\hat{\sigma}_i^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ is the Pauli spin operator for the *i*-th spin. Let $p(\sigma_1, \ldots, \sigma_N)$ be the probability that the system is in the microstate $|\sigma_1, \ldots, \sigma_N\rangle$:

(a) Determine the reduced probability $p_1(\sigma_i)$ that the *i*-th spin is in the configuration σ_i , depending on $p(\sigma_1, \ldots, \sigma_N)$.

(1 Point)

(b) Derive from the expression of the reduced probability the mean value $\langle \hat{M}^z \rangle$ of the total magnetisation, defined as $\hat{M}^z = -\mu_B \sum_i \hat{\sigma}_i^z$.

(1 Point)

(c) Determine the expression for the variance of the magnetisation

$$\Delta M^{z} = \sqrt{\langle (\hat{M}^{z})^{2} \rangle - \langle \hat{M}^{z} \rangle^{2}}$$
(8)

and show that it can be represented in terms of the reduced probability $p_1(\sigma_i)$ and the joint probability $p_2(\sigma_i, \sigma_j)$.

(1 Point)

(d) What is the mean value of the magnetisation $\langle \hat{M}^z \rangle$ in the case where the probability of finding the system in the configuration $|\sigma_1, \ldots, \sigma_N\rangle$ is uniformly

distributed $p(\sigma_1, \ldots, \sigma_N) = 1/2^N$? How large is then the variance ΔM^z and how does it scale with the system size N?

(1 Point)