WS 2021/22 TPIV: Quantum physics and statistical physics Sheet 07

16. Entropic elasticity

For a simple model of entropic elasticity, consider a one-dimensional chain consisting of N elements. Each element of the chain has the length a and should be able to align itself either parallel or antiparallel to the connection of the two end points. n elements of the chain are aligned antiparallel to the connection of the two end points, the remaining N - n elements are aligned parallel to it. Let the approximation $N \gg 1$, $n \gg 1$ and $N - n \gg 1$ be valid.

- (a) Calculate the number of microstates belonging to the state described above. Give a relationship between N, n and the length x of the chain. (1 point)
- (b) How does the entropy of the system depend on the length of the chain? Show that the entropy decreases with the length of the chain, i.e. $\partial_x S < 0$. What does this mean for the chain, assuming that the system tries to adopt a configuration where entropy is maximal.

(2 points)

17. Equivalent definitions of entropy

We consider a microcanonical ensemble with N identical particles, a volume V and an energy that takes values between $E - \Delta$ and E ($\Delta > 0$). Show that the following three formulae lead to an equivalent definition of the entropy S, differing only by an additive constant of order $O(\ln N)$.

$$S = k_B \ln \Gamma(E) \tag{1a}$$

$$S = k_B \ln \omega(E) \tag{1b}$$

$$S = k_B \ln \Sigma(E). \tag{1c}$$

Here $\Gamma(E)$ is the phase space volume occupied by the totality of all microstates with

$$\Gamma(E) = \int_{E-\Delta}^{E} \mathrm{d}E' \mathrm{Tr}\{\delta(E' - \hat{H})\},\tag{2}$$

 $\Sigma(E)$ is the phase space volume bounded by the area of energy E with

$$\Sigma(E) = \text{Tr}\{\theta(E - \hat{H})\},\tag{3}$$

and $\omega(E)$ is the density of states of the system at energy E which is defined as

$$\omega(E) = \frac{\partial \Sigma(E)}{\partial E}.$$
(4)

Hint: You may assume that $\Delta \ll E$ and that the hyperbody described by the integrand in Eq.(2) is such that $\Sigma(E - \Delta)/\Sigma(E) \rightarrow 0$, for fixed Δ and $N \rightarrow \infty$.

(2 points)

18. Microcanonical description of paramagnets

Consider again a system of N distinct spin-1/2 particles in a magnetic field. The individual spins can only assume two energy values $E_{-} = -E_0/2$ or $E_{+} = +E_0/2$. Let n_{-} be the occupation of E_{-} and n_{+} the occupation of E_{+} . Let the total energy of the system be U.

(a) Determine the entropy of the system in the microcanonical ensemble.

(1 point)

(b) Find the most probable values for n_+ and determine the standard deviation from these values.

(1 point)

(c) Determine the temperature and show that it can take negative values.

(1 point)

(d) Suppose that a negative temperature reservoir is brought into contact with a positive temperature reservoir. In which direction does the heat flow?

(1 point)

19. The von Neumann equation

Show that the formal solution of the von Neumann equation

$$\partial_t \rho_t = \frac{1}{i\hbar} [\hat{H}, \rho_t] \tag{5}$$

is given by the following equation

$$\hat{\rho} = e^{-i\hat{H}t/\hbar}\hat{\rho}_0 e^{i\hat{H}t/\hbar},\tag{6}$$

where $\hat{\rho}_0$ is the density matrix at time t = 0.

(1 point)