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Exercise 11 Poisson distribution und Stirling formula

We consider N independent coin tosses with a flipped coin. Heads occur with probability p,
tails with probability 1 − p. The probability of finding n times heads after N coin tosses is
given by the binomial distribution

WN(n) =

(
N
n

)
pn(1− p)N−n (1)

Here we focus on the limiting case of small probabilities of occurrence p� 1 (condition A) and
large numbers of trials n � N (condition B). We now want to find an approximation of the
binomial distributions in this limiting case. Proceed as follows:

a) Derive the Stirling formula

n! ≈
√

2πn
(n
e

)n
, fürn� 1 (2)

as the approximation of the factorial for large numbers n. Use the gamma function as a
continuous continuation of the factorial.

n! = Γ(n+ 1) =

∫ +∞

0

dxen ln(x)−x (3)

and substitute y = x/n. Approximate the remaining integral using the saddle point
approximation ∫ b

a

dxenf(x) ≈

√
2π

n|f ′′(x0)|
enf(x0), fürn� 1, (4)

for f twice continuously differentiable, arbitrary endpoints a < b, and x0 the global
maximum of f .

(1 point)

b) Show that (1− p)N−n ≈ e−Np.

(1 point)

c) Show that N !/(N − n)! ≈ Nn

(1 point)

d) Using the previous part of the exercise, derive the Poisson distribution

WN(n) =
λne−λ

n!
(5)



as a limiting case of the binomial distribution under conditions A and B, i.e. for a large
number of trials and small probabilities of occurrence p, where λ = Np. Calculate the
expectation value and variance of the distribution.

(1 point)

Exercise 12 Central limit theorem

The aim of this exercise is to derive the central limit theorem of probability theory. For
this purpose we consider N continuous random variables that can take the values xi ∈ R
(i ∈ {1, . . . N}), where xT = (x1, . . . , xN) ∈ RN . The probability that the random variables
assume values in the ”hypercube” [xi, xi+dxi] is given by w(x) dNx = w(w1, . . . , xN)dNx given.
Furthermore, let f(x) ∈ R be a known function of the random variable x. Then the expected
value (mean value) of this function with respect to the random variables is

〈f(x)〉 =

∫
RN

f(x)w(x) dNx .

Specifically referred to as

〈xni 〉 =

∫
RN

xni w(x) dNx

the n-th moment (n ∈ N) of the random variable xi, with 〈xi〉 as the corresponding mean and
(∆xi)

2 = 〈(xi − 〈xi〉)2〉 as variance (fluctuation square). Finally we define the characteristic
function of the probability density w(x) according to

χ(k) = 〈e−ik·x〉 =

∫
RN

e−ik·xw(x) dNx ,

so that conversely we get the probability density w(x) as a Fourier transform of the character-
istic function χ(k) over

w(x) =
1

(2π)N

∫
RN

eik·x χ(k) dNk.

a) Based on the random variables x, the function f̄ = f(x) ∈ R can also be interpreted as
a random variable. Show with the help of the characteristic function that its probability
density w̄(f̄) results from

w(f) = 〈δ(f − f(x))〉 =

∫
RN

δ(f − f(x))w(x) dNx.

(2 points)

b) For the sake of simplicity, in this question we restrict ourselves to the one-dimensional
case with x ∈ R as the only random variable and w(x) as the associated probability
density. Show that the characteristic function χ(k) with k ∈ R can be written as a power
series provided that all moments 〈xn〉 exist:

χ(k) =
∞∑
n=0

(−ik)n

n!
〈xn〉



In contrast, the so-called cumulants Cn (n ∈ N) of the probability density w(x) are
defined via the power series expansion of the logarithm of the characteristic function:

ln(χ(k)) =
∞∑
n=1

(−ik)n

n!
Cn .

Show that the first three cumulants can be determined from the first three moments of
the probability density w(x)

C1 = 〈x〉 ,
C2 = 〈x2〉 − 〈x〉2 = (∆x)2 ,

C3 = 〈x3〉 − 3〈x2〉〈x〉+ 2〈x〉3

(2 points)

c) In the following we consider again the general case N of different random variables and
define the so-called covariance matrix whose diagonal elements correspond to the variances
(∆xi)

2

Vik = 〈(xi − 〈xi〉)(xk − 〈xk〉)〉 ,

The off-diagonal elements of the covariance matrix are a measure of the extent to which
the fluctuations of the random variables xi and xk are correlated around the mean value.
Show that for a probability density of the form w(x) = w1(x1) w̃(x2, . . . , xN) all elements
V1k (k ∈ {2, . . . , N}) vanish.

(1 point)

d) We now come to the proof of the central limit theorem. For this we assume that
the individual random variables xi have the different probability densities wi(xi) and
are completely uncorrelated, i.e. the total probability density results from w(x) =
w1(x1)w2(x2) . . . wN(xN).

The central limit theorem states that the probability density w(y) = 〈δ(y− y(x))〉 of the
mean value y(x) = 1

N

∑N
i=1 xi of the various random variables for large N converges to

the Gaussian function

w̄(ȳ) ≈ 1√
2π(∆ȳ)2

e
− (ȳ−〈ȳ〉)2

2(∆ȳ)2 (N � 1) (6)

The mean value and the variance of the Gaussian distribution are given by 〈ȳ〉 = 〈y(x)〉
and (∆ȳ)2 = 1

N
(∆y)2, where

〈y(x)〉 =
1

N

N∑
i=1

〈xi〉 und (∆y)2 =
1

N

N∑
i=1

[
〈x2i 〉 − 〈xi〉2

]
That means, in the limit case N rightarrow infty the value of the random variable
becomes more or less sharp, since it applies to their relative fluctuation

∆ȳ

〈ȳ〉
=

1√
N

∆y

〈y(x)〉
→ 0 für N � 1



In particular, the Gaussian function (6) for N � 1 tends towards the delta function
δ(ȳ − 〈ȳ〉).
Prove the central limit theorem by deriving Eq. (6) under the assumption that all moments
〈xni 〉 exist for the individual probability densities wi(xi). Take them into account in your
calculation of all terms in the highest two orders of 1/N and neglect all higher orders.

(3 points)


