IOWA STATE UNIVERSITY

Department of Physics and Astronomy

Intertwined electronic states of matter: emergent order in frustrated antiferromagnets

Peter P. Orth (Iowa State University)

Physics Colloquium, Grinnell College, Grinnell, IA, 24 October 2017

Collaborators

J. Schmalian (Karlsruhe)

B. Jeevanesan (Karlsruhe)

P. Chandra (Rutgers)

P. Coleman (Rutgers)

R. M. Fernandes (Minnesota)

IOWA STATE UNIVERSITY

M. H. Christensen (Minnesota)

Experimental collaborators:

P. C. Canfield (lowa) & his group

- Condensed matter physics investigates states of matter = phases
 - Liquids, Solids: different translational symmetry

IOWA STATE UNIVERSITY

- Condensed matter physics investigates states of matter = phases
 - Liquids, Solids: different translational symmetry

IOWA STATE UNIVERSITY

- Condensed matter physics investigates states of matter = phases
 - Liquids, solids: crystals, quasi-crystals, amorphous matter, liquid crystals

Graphene: 2D crystal

order

Herbertsmithite: Kagome lattice

Quasicrystal: Au-Al-Yb

5-fold symmetry

[1] Wikipedia; [2] M. R. Norman, RMP **88**, 041002 (2016); [3] P. M. Chaikin, T. C. Lubensky "Principles of Condensed Matter Physics"; [4] K. Deguchi *et al.*, Nat Mat. **11**, 1013 (2012).

Liquid crystals: nematic orientational

IOWA STATE UNIVERSITY

- Condensed matter physics investigates states of matter = phases
 - Liquids, solids: crystals, quasi-crystals, amorphous matter, liquid crystals
 - Magnetic order: ferromagnetic, antiferro, spin-density waves, skyrmions
 - Paramagnets: low dimensional magnets, (quantum) spin liquids

Ferromagnets

Antiferromagnets Fe₂O₃

Skyrmions: topological spin structure

Quantum spin liquids

[1] Wikipedia; [2] ScienceDaily.com; [3] ETH Zuerich Website

ZnCu₃(OH)₆Cl₂

Herbertsmithite

IOWA STATE UNIVERSITY

- Condensed matter physics investigates states of matter = phases
 - Liquids, solids: crystals, quasi-crystals, amorphous matter, liquid crystals
 - Magnetic order: ferromagnetic, antiferro, spin-density waves, skyrmions
 - Paramagnets: trivial, (quantum) spin liquids
 - Electronic order: superconductivity, charge density waves
 - Topological order: topo. insulators, Weyl semimetals, skyrmions, toric code

[1] M. Z. Hasan, C. L. Kane, RMP 82 3045 (2010); N. P. Armitage et al., arXiv:1705:01111 (2017).

IOWA STATE UNIVERSITY

States of matter: emergent order

- Condensed matter physics investigates states of matter = phases
 - Liquids, solids: crystals, quasi-crystals, amorphous matter, liquid crystals
 - Magnetic order: ferromagnetic, antiferro, spin-density waves, skyrmions
 - Paramagnets: trivial, (quantum) spin liquids
 - Electronic order: superconductivity, charge density waves
 - Topological order: quantum (spin) Hall, Weyl semimetals, toric code

In all these examples:

Order occurs in elementary degrees of freedom: charge, spin.

Topic of this talk: Order can also

Order can also occur **in composite objects** such as higher order correlation functions (of charge and spin).

Emergent order

IOWA STATE UNIVERSITY

Department of Physics and Astronomy

8

How to describe matter: Theory of Everything

In contrast to particle physicist, we have a "Theory of Everything":

$$H = T_e + V_{ee} + T_i + V_{ii} + V_{ei} + H_{SO} + H_{hyper} + H_{rel} + H_{ext}$$

Electrons:
$$T_e + V_{ee} = -\sum_j \frac{\hbar^2}{2m_e} \nabla_j^2 + \frac{1}{2} \sum_{j \neq k} \frac{e^2}{|r_j - r_k|}$$

lons: $T_i + V_{ii} = -\sum_J \frac{\hbar^2}{2m_J} \nabla_J^2 + \frac{1}{2} \sum_{J \neq K} \frac{Z_J Z_K e^2}{|R_J - R_K|}$

Fauna studies, botany, ecology

Fox squirrel

$V \qquad \sum Z_J e^2$

Electron-ion interaction:

$$V_{ei} = -\sum_{j,J} \frac{1}{|r_j - R_J|}$$

Quarks & Atoms gluons

Coarse graining

IOWA STATE UNIVERSITY

Many-body systems: Exponential wall

- Quantum many-body wavefunction $\Psi(r_1, r_2, \ldots, r_N)$
- Number of states grows exponentially:

 $B = q^{3N}, q \ge 3$

Example: $\{|1,1\rangle, |1,2\rangle, |2,1\rangle, |2,2\rangle\}$ Bits needed to even record it.

 $\implies q = 3, N = 1000, B = 10^{1500} \gg 10^{80}$

Largely exceeds number of baryons in the universe!

Van Vleck catastrophy: the many-electron wavefunction may not even be a legitimate scientific concept when $N \ge 1000$.

- Numerical techniques based on density (DFT)
- Effective models (at different scales)
- Emergence of new phenomena at larger scales, renormalization group

[1] W. Kohn (Nobel lecture).

IOWA STATE UNIVERSITY

J. H. Van Vleck

W. Kohn

How do we build effective models: magnetism

- Two electrons in different orbitals of same ion
 - Electronic spin: orbital and spin wavefunction $\Psi(r_1,r_2,s_1,s_2) = \Phi(r_1,r_2)\chi(s_1,s_2)$
 - Coulomb repulsion
 - Pauli exclusion principle (Fermi statistics)

How do we build effective models: magnetism

- Two electrons localized around nearby ions
 - Coulomb repulsion small
 - Maximizing kinetic energy via delocalization (Heisenberg uncertainty principle)
 - Pauli exclusion principle

IOWA STATE UNIVERSITY

Magnetism and phase transitions

• Ising spin model (discrete spins) $J > 0, S_i^z = \pm 1$

Mean-field solution: $\sum_{\langle i,j \rangle} S_i^z S_j^z \to Nzm^2 + zm \sum_i S_i^z + \dots$

Self-consistency equation for the magnetization:

$$m = \frac{1}{Z} \sum_{S^z = \pm 1} S^z e^{-\beta H[S^z]} = \frac{e^{\beta J z m} - e^{-\beta J z m}}{e^{\beta J z m} + e^{-\beta J z m}} = \tanh \beta J z m$$

 \implies Non-zero solution below $T_c = zJ$

Phase transition from paramagnetic to magnetic state at T_c .

• Exact solution available in 1D (Ising) and 2D (Onsager): $T_c(1D) = 0, T_c(2D) = 2J/(\ln(1 + \sqrt{2})) = 2.27 J$

IOWA STATE UNIVERSITY

Department of Physics and Astronomy ¹³

Magnetic frustration

But, things can become much more interesting

- Ground state degeneracy
- Quantum disordered states: spin liquids (talk in a few weeks by my colleague Rebecca Flint)

IOWA STATE UNIVERSITY

Rebecca Flint (ISU)

Herbertsmithite

Order and phases of iron based superconductors (SCs)

BaFe₂As₂ crystal

Phase diagram of **iron based superconductor** $Ba(Fe_{1-x}Co_x)_2As_2$ (Canfield lab at Iowa State University)

[1] S. Nandi et al., PRL 104, 057006 (2010); [2] P. C. Canfield, S. L. Budko, Annu. Rev. Cond. Mat. 1, 27 (2010).

IOWA STATE UNIVERSITY

15

EMERGENT ORDER IN IRON BASED SUPERCONDUCTORS

IOWA STATE UNIVERSITY

Elementary order in iron based SC

[1] S. Nandi et al., PRL 104, 057006 (2010); [2] D. Johnston, Adv. Phys. 59, 803 (2010); [3] N. Ni et al., PRB 78, 214515 (2008).

IOWA STATE UNIVERSITY

Emergent order in iron based SC

IOWA STATE UNIVERSITY

Elementary and emergent order in iron based SC

Phase diagram of iron based superconductor

Mutual impact of intertwined phases

IOWA STATE UNIVERSITY

Broken symmetry classification

- Classify phases by broken symmetries (Landau paradigm)
- Order parameter $\phi \neq 0$ non-zero in symmetry broken phase
- Phase transitions = spontaneous change of symmetry

IOWA STATE UNIVERSITY

Spontaneous symmetry breaking at phase transition

- Expand free energy *F* close to phase transition in small $\phi(x) \propto M(x)$.
- Symmetry dictates form of expansion: w = 0 due to time-reversal (TR)

$$\phi = (a - b)/(a + b)$$

$$F = \frac{1}{2} \int d^{d}x \{ c [\nabla \phi]^{2} + r_{0}\phi^{2} - w\phi^{3} + u\phi^{4} \}$$

r₀ changes sign at $T = T_{c}$: $r_{0} = a(T - T_{c})$

Spontaneous symmetry breaking

$T > T_c : \langle \phi \rangle = 0$ $T < T_c : \langle \phi \rangle \neq 0$ $\phi \rightarrow -\phi$

TR symmetry broken

IOWA STATE UNIVERSITY

Free energy for iron based superconductors

- Tetragonal crystal lattice, FeAs-planes with Fe square lattices
- Magnetic fluctuations occur at two wavevectors: $Q_X = (\pi, 0), Q_Y = (0, \pi)$

IOWA STATE UNIVERSITY

22

Free energy for iron based superconductors

- Tetragonal crystal lattice, FeAs-planes with Fe square lattices
- Magnetic fluctuations occur at two wavevectors: $Q_X = (\pi, 0), Q_Y = (0, \pi)$

Bandstructure of FeSCs

Magnetic order parameter (OP)

$$oldsymbol{M}(oldsymbol{x}) = oldsymbol{M}_X \cos(oldsymbol{Q}_X \cdot oldsymbol{x}) + = oldsymbol{M}_Y \cos(oldsymbol{Q}_Y \cdot oldsymbol{x})$$

[1] J. Paglione and R. Greene Nature Physics 6, 645 (2010);
[2] R. M. Fernandes *et al.*, PRB 85, 024534 (2012).

IOWA STATE UNIVERSITY

Free energy for iron based superconductors

- Tetragonal crystal lattice, FeAs-planes with Fe square lattices
- Magnetic fluctuations occur at two wavevectors:

Free energy of iron based superconductors consistent with tetragonal and spin rotational symmetry

$$F = \int_{q} \chi_{q}^{-1} (\boldsymbol{M}_{X}^{2} + \boldsymbol{M}_{Y}^{2}) + \frac{u}{2} \int_{x} (\boldsymbol{M}_{X}^{2} + \boldsymbol{M}_{Y}^{2})^{2} - \frac{g}{2} \int_{x} (\boldsymbol{M}_{X}^{2} - \boldsymbol{M}_{Y}^{2})^{2} + 2w \int_{x} (\boldsymbol{M}_{X} \cdot \boldsymbol{M}_{Y})^{2}$$

Magnetic ground state minimizes free energy: depends on parameters *u*, *g*, *w*.

[1] R. M. Fernandes et al., PRB 85, 024534 (2012).

IOWA STATE UNIVERSITY

Three different types of magnetic order

Stripe spin-density wave (SSDW)

- M_1 or $M_2 \neq 0$. Breaks
 - 0(3) spin rotation symmetry
 - $C_4 \rightarrow C_2$ crystal symmetry

[1] R. M. Fernandes *et* al., PRB **93**, 014511 (2016). [2] M. H. Christensen, PPO, B. M. Andersen, R. M. Fernandes, (to be submitted, 2017).

Three different types of magnetic order

- Stripe spin-density wave (SSDW)
 - M_1 or $M_2 \neq 0$. Breaks
 - O(3) spin rotation symmetry
 - $C_4 \rightarrow C_2$ crystal symmetry
- Charge-spin density wave (CSDW)
 - M_1 and $M_2 \neq 0$, $M_1 \parallel M_2$. Breaks
 - *0*(3) spin rotation symmetry
 - Z₂ translational symmetry

[1] R. M. Fernandes *et al.*, PRB **93**, 014511 (2016). [2] M. H. Christensen, PPO, B. M. Andersen, R. M. Fernandes, (to be submitted, 2017).

Three different types of magnetic order

- Stripe spin-density wave (SSDW)
 - M_1 or $M_2 \neq 0$. Breaks
 - 0(3) spin rotation symmetry
 - $C_4 \rightarrow C_2$ crystal symmetry
- Charge-spin density wave (CSDW)
 - M_1 and $M_2 \neq 0$, $M_1 \parallel M_2$. Breaks
 - 0(3) spin rotation symmetry
 - Z₂ translational symmetry
- Spin-vortex crystal (SVC)
 - M_1 and $M_2 \neq 0$, $M_1 \perp M_2$. Breaks
 - *0*(3) spin rotation symmetry
 - O(2) spin rotation symmetry

[1] R. M. Fernandes *et* al., PRB **93**, 014511 (2016). [2] M. H. Christensen, PPO, B. M. Andersen, R. M. Fernandes, (to be submitted, 2017).

IOWA STATE UNIVERSITY

Different materials described by different parameters *u*, *g*, *w*

[1] S. Nandi et al., PRL 104, 057006 (2010); [2] A. E. Boehmer et al., Nat. Comm. 6, 7911 (2015).

IOWA STATE UNIVERSITY

Controlling and melting magnetic order

Two important questions arise:

IOWA STATE UNIVERSITY

- How is symmetry restored as magnetic order melts?
- How can we control phases?

29

Controlling and melting magnetic order

- How is symmetry restored as magnetic order melts?
 - One-step or two-step process?

Symmetry restored *via* two-steps: T_N < T_S

- Spin rotation symmetry O(3) restored at T_N
- Tetragonal symmetry C₄ restored at T_S

Intermediate nematic phase

- No magnetic order
- Only discrete Z_2 order $(C_4 \rightarrow C_2)$
- Structural change has electronic origin

[1] R. M. Fernandes et al., PRB 85, 024534 (2012);

IOWA STATE UNIVERSITY

Emergent orders exist for all three magnetic phases

Stripe magnetic order

Nematic Z₂ order

IOWA STATE UNIVERSITY

$$\phi_{
m nem} = \langle {oldsymbol M}_1^2 - {oldsymbol M}_2^2
angle$$

- x and y-bonds inequivalent
- Orthorhombic: only C₂ rotation symmetry
- Melts via (separate) 1st or 2nd order transition
- Realized in Ba(Fe_{1-x}Co_x)₂As₂

[1] R. M. Fernandes *et al.*, PRB **85**, 024534 (2012); [2] R.M. Fernandes *et al.*, PRB **93**, 014511 (2016); [3] M. H. Christensen, PPO, B. M. Andersen, R. M. Fernandes, (to be submitted, 2017).

Emergent orders exist for all three magnetic phases

Charge-spin density wave order (CSDW)

Charge-density wave Z₂ **order**

 $\phi_{\rm CDW} = \langle \boldsymbol{M}_1 \cdot \boldsymbol{M}_2 \rangle$

- 2 types of sites inequivalent
- Tetragonal: C₄-symmetric
- Realized in Ba_{1-x}K_xFe₂As₂

[1] R. M. Fernandes *et al.*, PRB **85**, 024534 (2012); [2] R.M. Fernandes *et al.*, PRB **93**, 014511 (2016); [3] M. H. Christensen, PPO, B. M. Andersen, R. M. Fernandes, (to be submitted, 2017).

Emergent orders exist for all three magnetic phases

Spin-vortex crystal order (SVC)

Melting of O(3)

 $\phi_{
m SVDW} = \langle \boldsymbol{M}_1 imes \boldsymbol{M}_2
angle$

- Tetragonal: *C*₄ symmetric
- *O*₂ order without SOC
- Z₂ order if moments are fixed to certain plane
- Generates staggered electric field on plaquettes

How to realize?

[1] R. M. Fernandes *et al.*, PRB **85**, 024534 (2012); [2] R.M. Fernandes *et al.*, PRB **93**, 014511 (2016); [3] M. H. Christensen, PPO, B. M. Andersen, R. M. Fernandes, (to be submitted, 2017).

IOWA STATE UNIVERSITY

Controlling magnetic order

How can we control phases?

- Doping, pressure, magnetic field
- Other possibilities

Coupling to emergent order parameter

- Apply external strain σ to cause orthorhombic distortion
- Acts as "conjugate field" for emergent order parameter φ_{nematic}
- $\Delta F = \sigma \phi_{nematic}$
- Transition temperature T_N to stripe order increases (27K in example)

IOWA STATE UNIVERSITY

CaKFe₄As₄: coupling to SVDW emergent order

Ca

Fe

As

Task: generate Spin Vortex Crystal magnetic order?

- Realize conjugate field to emergent SVDW order
- Two inequivalent As sites
- Breaks glide plane symmetry
- Lowers SVC magnetic state to be ground state

P. C. Canfield

William Meier

CaFe₂As₂

IOWA STATE UNIVERSITY

CaKFe₄As₄

Ca

As₂

Fe

As1

Κ

CaKFe₄As₄: coupling to SVDW emergent order

- Crystal structure generates conjugate field for emergent SVDW
- Lowers SVC magnetic state
- First time SVC phase is experimentally realized!

W. R. Meier, ..., PPO, ..., P. C. Canfield, arXiv:1706.01067 (2017).

IOWA STATE UNIVERSITY

Ca

As₂

Fe

As1

Κ

EMERGENT ORDER IN MICROSCOPIC SPIN MODELS

IOWA STATE UNIVERSITY

Microscopic spin model: J1-J2 model

J1-J2 model: application to iron based SC

IOWA STATE UNIVERSITY

Why do thermal phase transitions occur?

- Equilibrium state is minimum of free energy F = E TS
- Competition between internal energy E and entropy S

Example: One-dimensional **Ising model** describing interacting spins Hamiltonian: J > 0, ferromagnetic nearest-neighbor interaction $H = -J \sum_{\langle i,j \rangle} S_i S_j \quad , S_i = \pm 1$

At T = 0: ground state is all spins aligned (minimal energy E)

Why do thermal phase transitions occur?

- Equilibrium state shows minimum of free energy F = E TS
- Competition between internal energy E and entropy S

Example: One-dimensional Ising model

$$H = -J\sum_{\langle i,j\rangle} S_i S_j \quad , S_i = \pm 1$$

At finite T > 0: **Defects** can be thermally excited. Question: how many?

Landau-Peierls argument: calculate free energy of free defect

E = 2J $S \simeq k_B \log N$ $F \simeq 2J - k_B T \log N \xrightarrow[N \to \infty]{} -\infty$

Free energy reduced by generating defects. Proliferation of defects destroys order at T>0.

IOWA STATE UNIVERSITY

R. Peierls (1907 – 1995)

42

Order in two-dimensional Ising spin models

- Low T: Defect raises free energy
- High T: Defect lowers free energy

Defects proliferate above critical T_c: Phase transition (Ising universality).

[1] L. Onsager Phys. Rev. II 85, 808 (1944).

IOWA STATE UNIVERSITY

Continuous spin models in two dimensions

- Continuous spins with N components $S = (\cos(\theta_0 + \theta_x), \sin(\theta_0 + \theta_x))$
- Hamiltonian for N=2 planar spins

$$H = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j)$$

 $\frac{J}{}$

Ferromagnetic order at zero temperature for both classical and quantum spins (no frustration)

T=0 ground state (FM ordered)

IOWA STATE UNIVERSITY

Continuous spin models in two dimensions

Long-wavelength Hamiltonian (gradient energy)

$$H = \frac{J}{2} \int d^2 x (\nabla \theta_x)^2 = \frac{J}{2} \int \frac{d^2 q}{(2\pi)^2} q^2 |\theta_q|^2$$

Thermal fluctuations reduce magnetization:

$$\langle \cos \theta_x \rangle = \frac{1}{Z} \operatorname{Re} \int \mathcal{D}\theta_x e^{-\frac{J}{T} \int_x (\nabla \theta)^2 + i \int_x \theta_x} = e^{-\frac{1}{2} \langle \theta_x^2 \rangle}$$

Debye-Waller factor infrared divergent:

$$\frac{1}{2} \langle \theta_x^2 \rangle = \frac{T}{4\pi J} \int_{1/L}^{1/a} \frac{dq}{q} \propto \ln \frac{L}{a} \to \infty \text{ for } L \to \infty$$

Thermal fluctuations melt order at any finite T!

IOWA STATE UNIVERSITY

Continuous spin models in two dimensions

Long-wavelength Hamiltonian (gradient energy)

$$H = \frac{J}{2} \int d^2 x (\nabla \theta_x)^2 = \frac{J}{2} \int \frac{d^2 q}{(2\pi)^2} q^2 |\theta_q|^2$$

Thermal fluctuations reduce magnetization:

$$\langle \cos \theta_x \rangle = \frac{1}{Z} \operatorname{Re} \int \mathcal{D}\theta_x e^{-\frac{J}{T} \int_x (\nabla \theta)^2 + i \int_x \theta_x} = e^{-\frac{1}{2} \langle \theta_x^2 \rangle}$$

Debye-Waller factor infrared divergent:

$$\frac{1}{2} \langle \theta_x^2 \rangle = \frac{T}{4\pi J} \int_0^{1/a} \frac{dq}{q} \to \infty$$

Hohenberg-Mermin-Wagner theorem: No symmetry breaking of continuous degrees of freedom in $d \le 2$ at any finite temperature.

Emergent (discrete) order?

[1] N. D. Mermin, H. Wagner, PRL 17, 1133 (1966); P. C. Hohenberg, PR 158, 383 (1967).

IOWA STATE UNIVERSITY

Department of Physics and Astronomy

T > 0 state:

magnetization vanishes

 θ_i

J_1 - J_2 -Heisenberg model on square lattice

J₁-J₂-Heisenberg model on square lattice

$$H = J_1 \sum_{\langle i,j
angle} oldsymbol{S}_i \cdot oldsymbol{S}_j + J_2 \sum_{\langle \langle i,j
angle
angle} oldsymbol{S}_i \cdot oldsymbol{S}_j$$

 At T > 0: Finite spin correlation length (Hohenberg-Mermin-Wagner theorem)

$$\xi(T) \sim a_0 e^{2\pi J S^2/T}$$

 $J_2 > J_1$

[1] J. Villain, J. Phys. Fr 38, 385 (1977); [2] C. L. Henley, PRL 62, 2056 (1989); [3] P. Chandra, P. Coleman,
A. I. Larkin, PRL 64, 88 (1990); [4] C. Weber *et al.*, PRL 91, 177202 (2003);

IOWA STATE UNIVERSITY

Order from disorder

Fluctuation free energy [1] due to "order from disorder"

IOWA STATE UNIVERSITY

$$F = -E(T)[1 + \cos^2 \theta] \text{ minimized for } \theta = 0, \pi$$
with $E(T) = \frac{J_1 S^2}{2J_2} \left(\gamma_Q \frac{1}{S} + \gamma_T \frac{T}{J_2 S^2}\right)$

Spins tend to align the fluctuating Weiss' field of the neighbors to their easy plane [3].

Emergent discrete Ising \mathbb{Z}_2 order parameter

$$m_{\alpha} \sim S_1 \cdot S_2 = \pm 1$$

[1] P. Chandra et al., PRL 64, 88 (1990); [2] J. Villain, J. Phys. Fr :
[3] C. L. Henley, PRL 62, 2056 (1989)

 $\begin{array}{c} J_2 \\ J_2 \\ J_3 \\ J_4 \\ J_4 \\ J_4 \\ Q = (0,\pi) \end{array}$

 $m_{\alpha} = -1$ $Q = (\pi, 0)$

Emergent Ising order parameter in J₁-J₂-model

[1] P. Chandra, P. Coleman, A. I. Larkin, PRL **64**, 88 (1990); [2] C. Weber *et al.*, PRL **91**, 177202 (2003); [3] R. M. Fernandes *et al.*, PRL **105**, 157003 (2010);

IOWA STATE UNIVERSITY

Z₂ order drives structural transition

Phase diagram:

[1] R. M. Fernandes et al., PRL 105, 157003 (2010); [2] H. Luetkens, et al., Wat. Sat A. Bes (2000) V3ER Sandi Yet al., PRL 104, 0570 Department of Physics and Astronomy

2D Heisenberg windmill antiferromagnet

- Honeycomb + triangular lattice sites
- Heisenberg spins $\boldsymbol{S}_t(r_j), \boldsymbol{S}_A(r_j), \boldsymbol{S}_B(r_j)$
- Antiferromagnetic nearest-neighbor coupling

$$H = H_{tt} + H_{AB} + H_{tA} + H_{tB}$$
$$H_{ab} = J_{ab} \sum_{j=1}^{N_L} \sum_{\delta_{ab}} \boldsymbol{S}_a(r_j) \cdot \boldsymbol{S}_b(r_j + \delta_{ab})$$

Windmill in Strangnaes (Sweden)

$$a,b\in\{t,A,B\}$$

IOWA STATE UNIVERSITY

Ground state of classical spins at small J_{th}

Weak inter-sublattice coupling

 $J_{th} \ll J_{tt}, J_{hh}$

120 degree state on triangular lattice

 \Rightarrow O(3)/O(2) order parameter n(x)

 \Rightarrow SO(3) order parameter $t(m{x}) = ig(m{t}_1, \ m{t}_2, \ m{t}_3ig)$

Classically at T=0 decoupled even for $J_{th} > 0$

[1] B. Jeevanesan, PPO, PRB 90, 144435 (2014).

IOWA STATE UNIVERSITY

Fluctuation coupling "order from disorder"

$$J_{th} = 0.4\bar{J}$$
$$\bar{J} = \sqrt{J_{tt}J_{hh}}$$
$$T = 1, S = 1$$

- Fluctuations couple spins on different sublattices
- Spins tend to align perpendicular to fluctuation Weiss field

$$S_c = \frac{1}{2} \int d^2 x \left(\gamma \cos^2 \beta \right)$$

Coplanar:
$$\gamma = (J_{th}/\bar{J})^2 A_{\gamma} (J_{tt}/J_{hh}, \bar{J}/T)$$

[1] C. L. Henley, PRL 62, 2056 (1989)

IOWA STATE UNIVERSITY

Fluctuation coupling "order from disorder"

$$J_{th} = 0.4\bar{J}$$
$$\bar{J} = \sqrt{J_{tt}J_{hh}}$$
$$T = 1, S = 1$$

- Fluctuations couple spins on different sublattices
- Spins tend to align perpendicular to fluctuation Weiss field

$$S_c = \frac{1}{2} \int d^2 x \left(\gamma \cos^2 \beta \right)$$

Coplanar:
$$\gamma = (J_{th}/\bar{J})^2 A_{\gamma} \left(J_{tt}/J_{hh}, \bar{J}/T \right)$$

[1] C. L. Henley, PRL 62, 2056 (1989)

IOWA STATE UNIVERSITY

Fluctuation coupling "order from disorder"

- Fluctuations couple spins on different sublattices
- Spins tend to align perpendicular to fluctuation Weiss field

$$S_c = \frac{1}{2} \int d^2x \left(\gamma \cos^2 \beta + \lambda \sin^6 \beta \sin^2 \left(3\alpha \right) \right)$$

Coplanar:
$$\gamma \propto (J_{th}/\bar{J})^2$$
 Z₆: $\lambda \propto (J_{th}/\bar{J})^6$

[1] C. L. Henley, PRL 62, 2056 (1989)

IOWA STATE UNIVERSITY

Department of Physics and Astronomy

 t_3

 t_2

Phase diagram of windmill antiferromagnet

IOWA STATE UNIVERSITY

Classical Monte-Carlo simulation: phase diagram

 Proof of Polykov's conjecture that critical phase can exist in Heisenberg system (due to topological vacuum degeneracy).

[1] B. Jeevanesan, P. Chandra, P. Coleman, PPO, Phys. Rev. Lett. **115**, 177201 (2015).

IOWA STATE UNIVERSITY

Long-wavelength covariant action

 Long-wavelength action of 2d spin system takes form of (Euclidean) string theory [1]

$$S = \frac{1}{2} \int d^2x \ g_{ij}[X(x)] \partial_\mu X^i(x) \partial_\mu X^j(x) + \frac{\lambda}{2} \int d^2x \sin^2(3\alpha)$$

3 Euler angles and relative phase

Magnetization X = displacement of string in D=4 (compact) dimensions

[1] D. Friedan, PRL 45, 1057 (1980)

IOWA STATE UNIVERSITY

Magnetism as string theory

Action of 2D spin system takes form of (Euclidean) string theory [1]

$$S = \frac{1}{2} \int d^2x \ g_{ij}[X(x)] \partial_\mu X^i(x) \partial_\mu X^j(x) + \frac{\lambda}{2} \int d^2x \sin^2(3\alpha)$$

• Spin stiffnesses define metric tensor $X(\tau, x) = (\phi, \theta, \psi, \alpha)$

$$g = \begin{pmatrix} g^{SO(3)} & \mathcal{K}^T \\ \mathcal{K} & I_{\alpha} \end{pmatrix}$$
 SO(3) stiffnesses I_1, I_2, I_3
U(1) phase α is coupled to non-Abelian sector U(1) stiffness

Geometric curvature of manifold (Riemann tensor) determined by spin stiffnesses.

IOWA STATE UNIVERSITY

Magnetism and gravity: RG flow = Ricci flow

- Action is covariant with stiffness metric tensor
- Covariance is preserved during RG scaling [1]
- **RG flow of the metric is given by the Ricci flow** [1,2] (two loops)

Integrating out fast momenta

 RG flow of the metric is given by the Ricci flow (two loops) [1,2]

$$\frac{dg_{ij}}{dl} = -\frac{1}{2\pi}R_{ij} - \frac{1}{8\pi^2}R_i^{klm}R_{jklm}$$

Ricci and Riemann tensor determined by g_{ij}

[1] D. Friedan, PRL 45, 1057 (1980); [2] R. S. Hamilton, J. Differential Geom. 17, 255 (1982)

IOWA STATE UNIVERSITY

Compactification and magnetism

$$\frac{dg_{ij}}{dl} = -\frac{1}{2\pi}R_{ij} - \frac{1}{8\pi^2}R_i^{\ klm}R_{jklm}$$

- One-dimensionsal U(1) part of manifold decouples from 3D non-Abelian SO(3) part
- Ricci scalar grows like

$$\begin{split} R &= R^{SO(3)} - \frac{1}{2\pi I'_{\alpha}} \beta_{\alpha} \\ R^{SO(3)} &\sim 1/\bar{I} & \beta_{\alpha} = \frac{(I_1 - I_2)^2 r^2}{4\pi I_1 I_2} \end{split}$$

SO(3) part curles up

U(1) becomes flat

Toy model for compactification

[1] M. Gell-Mann and B. Zwiebach, Phys. Lett. B **141**, 333 (1984);
[2] L. Randall and R. Sundrum, PRL **83**, 4690 (1999)

IOWA STATE UNIVERSITY

Experimental proof of Poincare conjecture

- Poincare conjecture (1904), proven by Perelman in 2006
- "Every simply connected, closed 3-manifold is homeomorphic to a 3-sphere"
- Two-loop perturbative Ricci flow experiences singularities (false Landau poles). Not present in exact Ricci flow.
- Use classical magnet to simulate exact Ricci flow.
 Experimental proof of Poincare conjecture.
- Protocol:
 - Suitable magnet realizes given metric
 - Cool system
 - Measure spin correlation functions at various temperatures
 - Extract metric tensor
 - Obtain "surgery-free" generalized Ricci flow of manifold

G. Perelman (2006) H. Poincare

[1] P. Coleman, A. Tsvelik (private communication)

IOWA STATE UNIVERSITY

Summary

- Emergent order leads to rich physical phenomena
- Occurs in various strongly correlated materials
- Iron-based SC
 - Explain origin of structural orthorhombic transition
 - Control magnetic phases via coupling to EO
- Magnetism and gravity: exact Ricci flow
- Magnetic toy model for compactification

References:

- M. Christensen, PPO, B. M. Andersen, R. M. Fernandes (to be submitted, 2017).
- W. R. Meier, ..., PPO, ...P. C. Canfield, arXiv:1706:01067 (2017).
- B. Jeevanesan, P. Chandra, P. Coleman, PPO Phys. Rev. Lett. **115**, 177201 (2015).
- B. Jeevanesan, PPO Phys. Rev. B 90, 144435 (2014).
- PPO, P. Chandra, P. Coleman, J. Schmalian Phys. Rev. B 89, 0994417 (2014). Phys. Rev. Lett. 109, 237205 (2012).

 $U(1) \times SO(3)$ J_{tt} J_{th} J_{th} U(1) U(1)

IOWA STATE UNIVERSITY