IOWA STATE UNIVERSITY

Department of Physics and Astronomy

Intertwined vestigial order in quantum materials: nematicity and beyond

Peter P. Orth (Iowa State University)

Condensed Matter Seminar, LANL, May 20, 2019

Reference:

R. M. Fernandes, PPO, J. Schmalian Annu. Rev. Cond. Mat. **10**,133 (2019).

Collaborators

R. M. Fernandes (Minnesota)

M. H. Christensen (Minnesota)

P. Chandra (Rutgers)

P. Coleman (Rutgers)

J. Schmalian (Karlsruhe)

IOWA STATE UNIVERSITY

B. Jeevanesan (Munich)

Experimental collaborators:

P. C. Canfield (lowa) & his group

States of matter: symmetry, order and topology

- Condensed matter physics investigates states of matter = phases
 - Distinguish states by symmetry: Landau paradigm
 - Distinguish states by topology

IOWA STATE UNIVERSITY

States of matter: symmetry, order and topology

- Condensed matter physics investigates states of matter = phases
 - Distinguish states by symmetry: Landau paradigm
 - Distinguish states by topology: Topological properties of electronic wavefunction

[1] M. Z. Hasan, C. L. Kane, RMP 82 3045 (2010); N. P. Armitage et al., arXiv:1705:01111 (2017).

IOWA STATE UNIVERSITY

- Condensed matter physics investigates states of matter = phases
 - Liquids \rightarrow Solids: translational symmetry breaking by crystalline order
 - Liquids \rightarrow Nematics, Smectics: rotational symmetry breaking

- Solids break both continuous translational and rotational symmetries:
 - Discrete symmetries remain: 230 space groups, 32 point groups (in 3D)
 - Rigidity to shear
 - Goldstone modes
 - Quasi-crystals

[1] Wikipedia; [2] P. M. Chaikin, T. C. Lubensky "Principles of Condensed Matter Physics

IOWA STATE UNIVERSITY

Water ice: 3D crystal

Graphene: 2D crystal

- Condensed matter physics investigates states of matter = phases
 - Spatial symmetry-breaking: crystals, amorphous solids, nematics
 - Internal symmetry-breaking:
 - Spin space SU(2): magnetic order

Order parameters:

FM Magnetization:
$$\langle \boldsymbol{S}
angle = rac{1}{N} \sum_{i=1}^{N} \boldsymbol{S}_{i}$$

AFM Magnetization: $\langle \boldsymbol{S}
angle_{\boldsymbol{Q}=(\pi,\pi)} = rac{1}{N} \sum_{i=1}^{N} e^{i \boldsymbol{Q} \cdot \boldsymbol{r}_{i}} \boldsymbol{S}_{i}$

Skyrmion spin structure

[1] Wikipedia;

IOWA STATE UNIVERSITY

- Condensed matter physics investigates states of matter = phases
 - Spatial symmetry-breaking: crystals, amorphous solids, nematics
 - Internal symmetry-breaking:
 - Spin space *SU*(2): magnetic order
 - Particle conservation global U(1): superconductivity

Superconductivity

Cooper pair

Meissner effect

Order parameter

$$\Delta = -V_0 \sum_{\boldsymbol{k}} \langle c_{-\boldsymbol{k},\downarrow} c_{\boldsymbol{k},\uparrow} \rangle$$

Superconducting gap function (s-wave singlet pairing state)

IOWA STATE UNIVERSITY

[1] Wikipedia; [2] N. Ni et al., PRB 78, 214515 (2008).

- Condensed matter physics investigates states of matter = phases
 - Spatial symmetry-breaking: crystals, amorphous solids, nematics
 - Internal symmetry-breaking: magnets, superconductors

In all examples discussed so far: Order occurs in elementary degrees of freedom: charge, spin.

Order can also occur **in composite objects** such as higher order correlation functions (of charge and spin):

Composite order

$$\langle \eta^*_{\alpha}\eta_{\beta} \rangle \neq 0$$

For example, primary magnetic order $\eta_{\alpha} = \left(\langle \boldsymbol{S}_{\boldsymbol{Q}_1} \rangle, \langle \boldsymbol{S}_{\boldsymbol{Q}_2} \rangle \right)_{\alpha}$

- Composite order then relative spin order
- But not all combinations break a symmetry

[1] R. M. Fernandes, PPO, J. Schmalian, Annu. Rev. Cond. Mat. 10,133 (2019).

IOWA STATE UNIVERSITY

FM along x

AF along y

 $\theta = \pi$

Emergent Ising

 $M_i = \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{x}}$

8

variable

Example: iron-based superconductors

- Primary orders: magnetic and superconducting
- Vestigial order: nematic (122) and spin-vorticity density wave (1144) orders

IOWA STATE UNIVERSITY

Definition of vestigial order

In the ordered phase, we always find composite order

$$\langle \eta_{\alpha} \rangle \neq 0 \quad \square \quad \langle \eta_{\alpha} \eta_{\beta} \rangle \neq 0 \quad \text{(trivial)}$$

Vestigial phase: composite order without primary order

$$\langle \eta_{lpha}
angle = 0$$
 yet $\langle \eta_{lpha} \eta_{eta}
angle
eq 0$

vestige | \'ve-stij 🕥 \

Definition of vestige

- **1 a** (1) : a trace, mark, or visible sign left by something (such as an ancient city or a condition or practice) vanished or lost
 - (2) : the smallest quantity or trace

IOWA STATE UNIVERSITY

Vestigial order

In the ordered phase, we always find composite order

 $\langle \eta_{\alpha} \rangle \neq 0 \quad \square \quad \langle \eta_{\alpha} \eta_{\beta} \rangle \neq 0 \quad \text{(trivial)}$

Vestigial phase: composite order without primary order

 $\langle \eta_{lpha}
angle = 0$ yet $\langle \eta_{lpha} \eta_{eta}
angle
eq 0$

General idea: a "mother phase" from which several different vestigial orders with similar energy scales emerge.

➤ Similar to the phenomenon of "order by disorder" in frustrated magnets

[1] Nie et al, PNAS (2014); [2] Villain, J. Phys. France (1977); Henley, PRL (1989); Chandra, Coleman, Larkin, PRL (1990).

IOWA STATE UNIVERSITY

Example of vestigial order in antiferromagnet

Frustrated J1-J2 antiferromagnet on square lattice

Consider $J_2 > J_1$:

- Interpenetrating square lattices with dominant Neel-order fluctuations
- At T > 0, magnetic correlation length finite (Mermin-Wagner): $\langle \eta_{\alpha} \rangle = 0$
- Sublattices only coupled by fluctuations $m{S}_i = \langle m{S}_i
 angle + \delta m{S}_i$

[1] Villain, J. Phys. France (1977); Henley, PRL (1989); Chandra, Coleman, Larkin, PRL (1990).

IOWA STATE UNIVERSITY

Example of vestigial order in antiferromagnet

Frustrated J1-J2 antiferromagnet on square lattice

Fluctuation free-energy mimina at $\theta = 0, \pi$

Composite order parameter:

$$\langle \phi \rangle \equiv \langle \eta_{\alpha} \eta_{\beta} \rangle = \langle \boldsymbol{S}_1 \cdot \boldsymbol{S}_2 \rangle$$

From spin-wave analysis. Entropy maximized ----- "Order by Disorder".

[1] Chandra, Coleman, Larkin, PRL (1990).

IOWA STATE UNIVERSITY

Ising phase transition at finite temperature

- Finite T phase transition into phase with finite vestigial order
- Classical Monte-Carlo results

[1] P. Chandra, P. Coleman, A. I. Larkin, PRL 64, 88 (1990); [2] C. Weber et al., PRL 91, 177202 (2003);

IOWA STATE UNIVERSITY

2D Heisenberg windmill antiferromagnet

- Honeycomb + triangular lattice sites
- Heisenberg spins $\boldsymbol{S}_t(r_j), \boldsymbol{S}_A(r_j), \boldsymbol{S}_B(r_j)$
- Antiferromagnetic nearest-neighbor coupling

$$H = H_{tt} + H_{AB} + H_{tA} + H_{tB}$$
$$H_{ab} = J_{ab} \sum_{j=1}^{N_L} \sum_{\delta_{ab}} \boldsymbol{S}_a(r_j) \cdot \boldsymbol{S}_b(r_j + \delta_{ab})$$
$$a, b \in \{t, A, B\}$$

Windmill in Strangnaes (Sweden)

[1,2] PPO, P. Chandra, P. Coleman, J. Schmalian, PRL (2012); PRB (2014); [3] PPO, B. Jeevanesan, PRB (2014); B. Jeevanesan, P. Chandra, P. Coleman, PPO, PRL (2015).

IOWA STATE UNIVERSITY

Ground state of classical spins at small J_{th}

Weak inter-sublattice coupling

 $J_{th} \ll J_{tt}, J_{hh}$

120 degree state on **triangular lattice** SO(3) order parameter $t(\mathbf{x}) = (\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3)$

 \Rightarrow O(3)/O(2) order parameter n(x)

Classically at T=0 decoupled even for $J_{th} > 0$

[1] B. Jeevanesan, PPO, PRB 90, 144435 (2014).

Fluctuation coupling "order from disorder"

$$J_{th} = 0.4\bar{J}$$
$$\bar{J} = \sqrt{J_{tt}J_{hh}}$$
$$T = 1, S = 1$$

- Fluctuations couple spins on different sublattices
- Spins tend to align perpendicular to fluctuation Weiss field

$$S_c = \frac{1}{2} \int d^2 x \left(\gamma \cos^2 \beta \right)$$

Coplanar:
$$\gamma = (J_{th}/\bar{J})^2 A_{\gamma} (J_{tt}/J_{hh}, \bar{J}/T)$$

[1] C. L. Henley, PRL 62, 2056 (1989)

IOWA STATE UNIVERSITY

Fluctuation coupling "order from disorder"

$$J_{th} = 0.4\bar{J}$$
$$\bar{J} = \sqrt{J_{tt}J_{hh}}$$
$$T = 1, S = 1$$

- Fluctuations couple spins on different sublattices
- Spins tend to align perpendicular to fluctuation Weiss field

$$S_c = \frac{1}{2} \int d^2 x \left(\gamma \cos^2 \beta\right)$$

Coplanar:
$$\gamma = (J_{th}/\bar{J})^2 A_{\gamma} \left(J_{tt}/J_{hh}, \bar{J}/T\right)$$

[1] C. L. Henley, PRL 62, 2056 (1989)

IOWA STATE UNIVERSITY

Fluctuation coupling "order from disorder"

- Fluctuations couple spins on different sublattices
- Spins tend to align perpendicular to fluctuation Weiss field

$$S_c = \frac{1}{2} \int d^2x \left(\gamma \cos^2 \beta + \lambda \sin^6 \beta \sin^2 \left(3\alpha \right) \right)$$

Coplanar:
$$\gamma \propto (J_{th}/\bar{J})^2$$
 Z₆: $\lambda \propto (J_{th}/\bar{J})^6$

[1] C. L. Henley, PRL 62, 2056 (1989)

IOWA STATE UNIVERSITY

Department of Physics and Astronomy

t1

 t_3

Long-wavelength covariant action

 Long-wavelength action of 2d spin system takes form of (Euclidean) string theory [1]

$$S = \frac{1}{2} \int d^2x \ g_{ij}[X(x)] \partial_\mu X^i(x) \partial_\mu X^j(x) + \frac{\lambda}{2} \int d^2x \sin^2(3\alpha)$$

3 Euler angles and relative phase

Magnetization X = displacement of string in D=4 (compact) dimensions

[1] D. Friedan, PRL 45, 1057 (1980)

IOWA STATE UNIVERSITY

Magnetism as string theory

Action of 2D spin system takes form of (Euclidean) string theory [1]

$$S = \frac{1}{2} \int d^2x \ g_{ij}[X(x)] \partial_\mu X^i(x) \partial_\mu X^j(x) + \frac{\lambda}{2} \int d^2x \sin^2(3\alpha)$$

• Spin stiffnesses define metric tensor $X(\tau, x) = (\phi, \theta, \psi, \alpha)$

$$g = \begin{pmatrix} g^{SO(3)} & \mathcal{K}^T \\ \mathcal{K} & I_{\alpha} \end{pmatrix}$$
 SO(3) stiffnesses I_1, I_2, I_3
J(1) phase α is coupled to non-Abelian sector U(1) stiffness

Geometric curvature of manifold (Riemann tensor) determined by spin stiffnesses.

[1] D. Friedan, PRL 45, 1057 (1980);
[2, 3] PPO, P. Chandra, P. Coleman, J. Schmalian, PRL (2012); PRB (2014)

IOWA STATE UNIVERSITY

Magnetism and gravity: RG flow = Ricci flow

- Action is covariant with stiffness metric tensor
- Covariance is preserved during RG scaling [1]
- **RG flow of the metric is given by the Ricci flow** [1,2] (two loops)

[1] D. Friedan, PRL 45, 1057 (1980); [2] R. S. Hamilton, J. Differential Geom. 17, 255 (1982)

IOWA STATE UNIVERSITY

Compactification and magnetism

$$\frac{dg_{ij}}{dl} = -\frac{1}{2\pi}R_{ij} - \frac{1}{8\pi^2}R_i^{\ klm}R_{jklm}$$

- One-dimensionsal U(1) part of manifold decouples from 3D non-Abelian SO(3) part
- Ricci scalar grows like

$$R = R^{SO(3)} - \frac{1}{2\pi I'_{\alpha}} \beta_{\alpha}$$

$$\beta_{\alpha} = \frac{(I_1 - I_2)^2 r^2}{4\pi I_1 I_2}$$

SO(3) part curles up

U(1) becomes flat

Toy model for compactification

M. Gell-Mann and B. Zwiebach, Phys. Lett. B **141**, 333 (1984);
 L. Randall and R. Sundrum, PRL **83**, 4690 (1999)
 4] PPO, P. Chandra, P. Coleman, J. Schmalian, PRL (2012); PRB (2014);

IOWA STATE UNIVERSITY

Experimental proof of Poincare conjecture

- Poincare conjecture (1904), proven by Perelman in 2006
- "Every simply connected, closed 3-manifold is homeomorphic to a 3-sphere"
- Two-loop perturbative Ricci flow experiences singularities (false Landau poles). Not present in exact Ricci flow.
- Use classical magnet to simulate exact Ricci flow.
 Experimental proof of Poincare conjecture.
- Protocol:
 - Suitable magnet realizes given metric
 - Cool system
 - Measure spin correlation functions at various temperatures
 - Extract metric tensor
 - Obtain "surgery-free" generalized Ricci flow of manifold

G. Perelman (2006) H. Poincare

[1] P. Coleman, A. Tsvelik (private communication)

IOWA STATE UNIVERSITY

Classical Monte-Carlo simulation: phase diagram

- Large-scale parallel-tempering classical Monte-Carlo simulations
- Proof of Polykov's conjecture that critical phase can exist in Heisenberg system (due to topological vacuum degeneracy).
- [1] B. Jeevanesan, P. Chandra, P. Coleman, PPO, PRL (2015).

IOWA STATE UNIVERSITY

Phase diagram of windmill antiferromagnet

IOWA STATE UNIVERSITY

- Unsupervised machine learning algorithm
- Principal Component Analysis (PCA)
 - Linear orthogonal transformation to basis with decreasing data variance (maximal projections)

IOWA STATE UNIVERSITY

- Unsupervised machine learning algorithm
- Principal Component Analysis (PCA)
 - Linear orthogonal transformation to basis with decreasing data variance (maximal projections)

IOWA STATE UNIVERSITY

- Unsupervised machine learning algorithm
- Principal Component Analysis (PCA)
 - Linear orthogonal transformation to basis with decreasing data variance
 - Feed spin snapshot data obtained in classical Monte-Carlo simulation

$$\boldsymbol{x} = (S_1^x, S_1^y, S_1^z, \dots, S_N^z)$$
= Six principal modes $\lambda_1, \dots, \lambda_6$
= Correspond to
= 3 spin polarizations at
= 2 wavevectors $(\pi, 0)$ and $(0, \pi)$

$$L = 16$$

$$v_4$$

No sign of vestigial order as PCA is linear!

disordered

estidia

8.0 T°/J1

0.4

Feed in addition bond expectation values of spin snapshot data

IOWA STATE UNIVERSITY

Feed in addition bond expectation values of spin snapshot data

IOWA STATE UNIVERSITY

Vestigial order in complex materials

 Naturally gives rise to complexity observed in phase diagrams across correlated quantum materials

[1] Keimer et al., Nature (2015); [2] S. Nandi *et al.*, PRL **104**, 057006 (2010); [2] P. C. Canfield, S. L. Budko, Annu. Rev. Cond. Mat. **1**, 27 (2010).

IOWA STATE UNIVERSITY

Complexity of phase diagrams in correlated materials

[1] Taddei et al., PRB (2016); [2] W. R. Meier, ..., PPO, ...P.C. Canfield, npj Quantum Materials (2018).

IOWA STATE UNIVERSITY

Complex phase diagrams

- Multiple ordered states that break different symmetries but exhibit comparable energy scales
- Landau theory of competing orders: ϕ_1 , ϕ_2

 $f = \frac{1}{2}r(\phi_1^2 + \phi_2^2) - \frac{1}{2}g(\phi_1^2 - \phi_2^2) + u_1\phi_1^4 + u_2\phi_2^4 + 2u_{12}\phi_1^2\phi_2^2.$

Fine-tuning of multiple coupling constants required to explain complexity (several multicritical points).

[1] P. M. Chaikin, T. C. Lubensky "Principles of Condensed Matter Physics; [2] Kosterlitz, Nelson, Fisher, PRB (1976).

IOWA STATE UNIVERSITY

Vestigial order: a natural explanation of complexity

- Fluctuation-driven vestigial orders: powerful framework to describe interplay between multiple phases with comparable transition temperatures
- Based on symmetry alone, no fine tuning of parameters

[1] R. M. Fernandes, PPO, J. Schmalian, Annu. Rev. Cond. Mat. 10, 133 (2019); [2] see also Fradkin et al, RMP (2015).

IOWA STATE UNIVERSITY

Group theory definition of vestigial order

- Symmetry group of the system: $G = (spatial) \times (internal)$ symm.
- Complex primary order parameter η_{α} transforms according to an irreducible representation (irrep) Γ of G
- Components $\alpha = 1, \ldots, d_{\Gamma}$, where d_{Γ} = dimensionality of irrep
- Example: singlet s-wave superconductivity (I=0)

[1] P. M. Chaikin, T. C. Lubensky "Principles of Condensed Matter Physics; [2] Gernot-katzers-spice-pages.com

IOWA STATE UNIVERSITY

Primary and vestigial phase

$$\begin{array}{ccc} \eta & \mathcal{G} = G \otimes \mathrm{U}(1) & \Gamma = A_1 \otimes e^{ik\varphi} & Y_{00} \\ & \uparrow & \uparrow & \uparrow \\ \text{Point group} & \text{of lattice} & \text{Trivial irrep} & \text{Basis function} \end{array}$$

• Primary phase: $\langle \eta \rangle \neq 0$

Here: Breaking of U(1) symmetry, as trivially under point group operations.

Composite order parameter:

$$\phi_{m} = \sum_{\alpha,\beta=1}^{d_{\Gamma}} \eta_{\alpha}^{*} \Lambda_{\alpha\beta}^{m} \eta_{\beta}$$

$$d_{\Gamma} \times d_{\Gamma} \text{ matrix}$$

 \succ Transforms under one of the m irreps Γ^m of the product $\Gamma^*\otimes\Gamma$

► Note that
$$\Gamma^* \otimes \Gamma = A_{1g}$$
, if $d_{\Gamma} = 1$ as $(-1)^2 = 1$.

 \succ Composite object can transform non-trivially only for $d_{\Gamma}>1$

[1] P. M. Chaikin, T. C. Lubensky "Principles of Condensed Matter Physics; [2] Gernot-katzers-spice-pages.com

IOWA STATE UNIVERSITY

Primary and vestigial phase

$$\begin{array}{ccc} \eta & \mathcal{G} = G \otimes \mathrm{U}(1) & \Gamma = A_1 \otimes e^{ik\varphi} & Y_{00} \\ & \uparrow & & \uparrow & & \uparrow \\ \text{Point group} & \text{of lattice} & & \text{Trivial irrep} & \text{Basis function} \end{array}$$

• Primary phase: $\langle \eta \rangle \neq 0$

Breaking of U(1) symmetry. Transforms trivially under point group operations.

Composite order parameter:

$$\phi_1 = \langle |\eta|^2 \rangle \neq 0$$

\succ Transforms trivially as A_{1g}

Always non-zero: gap amplitude fluctuations: No vestigial order!

Not all composite objects break a symmetry

[1] P. M. Chaikin, T. C. Lubensky "Principles of Condensed Matter Physics; [2] Gernot-katzers-spice-pages.com

IOWA STATE UNIVERSITY

Vestigial order from magnetic primary order

• Neel magnetic order with $Q = (\pi, \pi)$

 $\mathcal{G} = G \otimes \mathrm{SO}(3)$

G is, for example, tetragonal point group like D_{4h} or C_{4v} .

- Local spin $oldsymbol{S}(oldsymbol{r}) = oldsymbol{m}_{oldsymbol{Q}=(\pi,\pi)}\cos(oldsymbol{Q}\cdotoldsymbol{r})$
- Vestigial order transforms as A_{1g} as d_Γ = 1 in spatial part G: m_Q.
 → no vestigial order that breaks lattice symmetries (from G part)
- Need multiple wave-vectors related by lattice symmetry.

IOWA STATE UNIVERSITY

Magnetism in iron-based superconductors

• Magnetic fluctuations peaked at two inequivalent wave-vectors $Q_1 = (\pi, 0)$ and $Q_1 = (0, \pi)$

IOWA STATE UNIVERSITY

Spin-density waves on the square lattice

 Free-energy in tetragonal system and including time-reversal (without spin-orbit coupling)

$$S = \int_{k} r_{0}(k)(\boldsymbol{m}_{1}^{2} + \boldsymbol{m}_{2}^{2}) + \frac{u}{2} \int_{r} (\boldsymbol{m}_{1}^{2} + \boldsymbol{m}_{2}^{2})^{2} - \frac{g}{2} \int_{r} (\boldsymbol{m}_{1}^{2} - \boldsymbol{m}_{2}^{2})^{2} + 2w \int_{r} (\boldsymbol{m}_{1} \cdot \boldsymbol{m}_{2})^{2}$$

Second-order coefficient: $r_0 = r_0 + k^2$ $+ \gamma |\omega_n|$

Three-types of magnetic order minimize free-energy

SSDW Stripe spin-density wave (SSDW) $\langle \mathbf{m}_1 \rangle \neq 0$ $\langle \mathbf{m}_2 \rangle = 0$ $\langle \mathbf{m}_2 \rangle = 0$ $Q_1 = (\pi, 0)$

[1] Lorenzana et al, PRL (2008); [2] Eremin et al, PRB (2010); [3] Brydon et al, PRB (2011); [4] Giovannetti et al, Nat. Commun. (2011 Wang et al., PRB (2015), M. H. Christensen, PPO, B. Andersen, R. M. Fernandes, PRL (2018).

IOWA STATE UNIVERSITY

Spin-density waves on the square lattice

Free-energy in tetragonal system and including time-reversal (without spin-orbit coupling)

$$S = \int_{k} r_{0}(k)(\boldsymbol{m}_{1}^{2} + \boldsymbol{m}_{2}^{2}) + \frac{u}{2} \int_{r} (\boldsymbol{m}_{1}^{2} + \boldsymbol{m}_{2}^{2})^{2} - \frac{g}{2} \int_{r} (\boldsymbol{m}_{1}^{2} - \boldsymbol{m}_{2}^{2})^{2} + 2w \int_{r} (\boldsymbol{m}_{1} \cdot \boldsymbol{m}_{2})^{2}$$

Second-order coefficient: $r_0 = r_0 + k^2$ $+\gamma|\omega_n|$

Three-types of magnetic order minimize free-energy

Charge-spin density wave (CSDW)

Collinear double-Q

[1] Lorenzana et al, PRL (2008); [2] Eremin et al, PRB (2010); [3] Brydon et al, PRB (2011); [4] Giovannetti et al, Nat. Commun. (2011 Wang et al., PRB (2015), M. H. Christensen, PPO, B. Andersen, R. M. Fernandes, PRL (2018).

Spin-density waves on the square lattice

Free-energy in tetragonal system and including time-reversal (without spin-orbit coupling)

$$S = \int_{k} r_{0}(k)(\boldsymbol{m}_{1}^{2} + \boldsymbol{m}_{2}^{2}) + \frac{u}{2} \int_{r} (\boldsymbol{m}_{1}^{2} + \boldsymbol{m}_{2}^{2})^{2} - \frac{g}{2} \int_{r} (\boldsymbol{m}_{1}^{2} - \boldsymbol{m}_{2}^{2})^{2} + 2w \int_{r} (\boldsymbol{m}_{1} \cdot \boldsymbol{m}_{2})^{2}$$

Second-order coefficient: $r_0 = r_0 + k^2$ $+\gamma|\omega_n|$

Three-types of magnetic order minimize free-energy

SVC

Spin-vortex crystal (SVC)Spin-vortex crystal (SVC) $m_1 > = \langle m_2 \rangle \neq 0$ $m_1 > \perp \langle m_2 \rangle$ Spin-vortex crystal (SVC) $m_1 > \perp \langle m_2 \rangle$ Spin-vortex crystal (SVC)

[1] Lorenzana et al, PRL (2008); [2] Eremin et al, PRB (2010); [3] Brydon et al, PRB (2011); [4] Giovannetti et al, Nat. Commun. (2011 Wang et al., PRB (2015), M. H. Christensen, PPO, B. Andersen, R. M. Fernandes, PRL (2018).

IOWA STATE UNIVERSITY

Spin-density waves on the square lattice (primary orders)

Three-types of magnetic order minimize free-energy

 All states break spatial symmetries in addition to SO(3)

[1] Lorenzana et al, PRL (2008); [2] Eremin et al, PRB (2010); [3] Brydon et al, PRB (2011); [4] Giovannetti et al, Nat. Commun. (2011 Wang et al., PRB (2015), M. H. Christensen, PPO, B. Andersen, R. M. Fernandes, PRL (2018).

IOWA STATE UNIVERSITY

Interlude: complexity from universality

- Mean-field analysis so far
- Interactions are relevant as system is at upper critical dimension (d=2, z=2)
- Perform renormalization group analysis
- Find mean-field phases are stable with respect to interactions
- Transitions become first-order

Complexity of magnetic phases close to SC dome fine tuned?

IOWA STATE UNIVERSITY

Emergent magnetic degeneracy from spin-orbit

Spin-orbit coupling amplified $S_{SOC}^{(2)} = \int_{k} r_0(k) (\mathbf{M}_1^2 + \mathbf{M}_2^2) + \alpha_1 \int_{k} (M_{x,1}^2 + M_{y,2}^2)$ by interactions (in RG flow): $+ \alpha_2 \int_{k} (M_{x,2}^2 + M_{y,1}^2) + \alpha_3 \int_{k} (M_{z,1}^2 + M_{z,2}^2)$

- New Gaussian fixed point emerges at finite spin-orbit coupling
- Magnetic phases become degenerate at low energies
- Proliferation of new magnetic phases expected at QCP

M. H. Christensen, PPO, B. Andersen, R. M. Fernandes, PRL (2018), PRB (2018).

IOWA STATE UNIVERSITY

Universality + SOC leads to magnetic degeneracy

- RG flow continues on longer scales close to QCP
- Phases become more and more degenerate
- Basin of attraction of Gaussian fixed point increases with anisotropy

IOWA STATE UNIVERSITY

Vestigial orders from spin-density waves on the square lattice

Three-types of magnetic order minimize free-energy

- All states break spatial symmetries in addition to SO(3)
- Construct composite order parameters

$$\phi_m = \sum_{\alpha,\beta=1}^{d_{\Gamma}} \eta^*_{\alpha} \Lambda^m_{\alpha\beta} \eta_{\beta}$$

Symmetry group and irrep of primary order?
➤ Primary order breaks translational symmetry
➤ Use extended point groups (treat as q=0 order)

CSDW

(a)

30

SVC

[1] Lorenzana et al, PRL (2008); [2] Eremin et al, PRB (2010); [3] Brydon et al, PRB (2011); [4] Giovannetti et al, Nat. Commun. (2011); Wang et al., PRB (2015), M. H. Christensen, PPO, B. Andersen, R. M. Fernandes, PRL (2018).

IOWA STATE UNIVERSITY

Department of Physics and Astronomy

Phase diagram

Isotropic

SSDW

Extended point group $C_{4v}^{\prime\prime\prime}$

- Extended point group: add translations t₁=a₁, t₂=a₂, a₁+a₂ to point group elements
- Spin-density wave with $Q_{1,2}$ then becomes q = 0 order
- Can analyze irreps of extended point group (instead of space group)

[1] Basko, PRB (2012); [2] Serbyn, Lee, PRB (2013); [3] Venderbos, PRB (2016).

IOWA STATE UNIVERSITY

Vestigial order of $Q_{1,2}$ SDW on square lattice

TABLE VIII. Character table of the point group $C_{4v}^{\prime\prime\prime}$. Translations t_1 and t_2 correspond to $T(\vec{a}_1)$ and $T(\vec{a}_2)$, respectively, and $t_3 = T(\vec{a}_1 + \vec{a}_2)$. The conjugacy classes consist of the elements $C_{1v}^{\prime\prime\prime} = \{I\}, C_{2v}^{\prime\prime\prime} = \{t_1, t_2\}, C_{3v}^{\prime\prime\prime\prime} = \{t_2\}, C_{4v}^{\prime\prime\prime\prime} = \{C_2\}, C_{5v}^{\prime\prime\prime\prime} = \{t_1C_2, t_2C_2\}, C_{6v}^{\prime\prime\prime\prime} = \{t_3C_2\}, C_{7v}^{\prime\prime\prime\prime} = \{C_4, C_4^{-1}, t_3C_4, t_3C_4^{-1}\}, C_{8v}^{\prime\prime\prime\prime} = \{t_1C_4, t_1C_4^{-1}, t_2C_4, t_2C_4^{-1}\}, C_{9v}^{\prime\prime\prime\prime} = \{\sigma_{v1}, \sigma_{v2}\}, C_{10}^{\prime\prime\prime\prime} = \{t_1\sigma_{v1}, t_2\sigma_{v2}\}, C_{11}^{\prime\prime\prime\prime} = \{t_2\sigma_{v1}, t_1\sigma_{v2}\}, C_{12}^{\prime\prime\prime\prime} = \{t_3\sigma_{v1}, t_3\sigma_{v2}\}, C_{13}^{\prime\prime\prime\prime} = \{\sigma_{d1}, \sigma_{d2}, t_3\sigma_{d1}, t_3\sigma_{d2}\}$, and $C_{14}^{\prime\prime\prime} = \{t_1\sigma_{d1}, t_1\sigma_{d2}, t_2\sigma_{d1}, t_2\sigma_{d2}\}$. The character table is taken from Ref. [21]. Notation is altered with respect to Ref. [21] to be consistent with the notation and definitions of this work.

Conjugacy class		t_1, t_2					C_A		σ_v				σ_d	
Point group $C_{4v}^{\prime\prime\prime}$	\mathcal{C}_1'''	$\mathcal{C}_2^{\prime\prime\prime\prime}$	\mathcal{C}_3'''	$\mathcal{C}_4^{\prime\prime\prime}$	$\mathcal{C}_5^{\prime\prime\prime}$	\mathcal{C}_6'''	$\mathcal{C}_{7}^{\prime\prime\prime}$	\mathcal{C}_8'''	\mathcal{C}_9'''	$\mathcal{C}_{10}^{\prime\prime\prime}$	$\mathcal{C}_{11}^{\prime\prime\prime}$	$\mathcal{C}_{12}^{\prime\prime\prime}$	$\mathcal{C}_{13}^{\prime\prime\prime\prime}$	$\mathcal{C}_{14}^{\prime\prime\prime}$
A_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
A_2	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
B_1	1	1	1	1	1	1	-1	-1	1	1	1	1	$^{-1}$	-1
B_2	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1
E_1	2	2	2	-2	-2	$^{-2}$	0	0	0	0	0	0	0	0
A'_1	1	-1	1	1	-1	1	1	-1	1	-1	-1	1	1	-1
A'_2	1	-1	1	1	-1	1	1	-1	-1	1	1	-1	-1	1
B'_1	1	-1	1	1	-1	1	-1	1	1	-1	-1	1	-1	1
B'_2	1	-1	1	1	-1	1	-1	1	-1	1	1	-1	1	-1
E'_1	2	$^{-2}$	2	-2	2	-2	0	0	0	0	0	0	0	0
E_2	2	0	-2	2	0	-2	0	0	$^{-2}$	0	0	2	0	0
E_3	2	0	$^{-2}$	2	0	-2	0	0	2	0	0	$^{-2}$	0	0
E_4	2	0	$^{-2}$	$^{-2}$	0	2	0	0	0	2	$^{-2}$	0	0	0
E_5	2	0	-2	-2	0	2	0	0	0	-2	2	0	0	0

SDW order:

$$oldsymbol{S}(oldsymbol{r}) = oldsymbol{m}_1 \sin(oldsymbol{Q}_1 \cdot oldsymbol{r}) \ + oldsymbol{m}_2 \sin(oldsymbol{Q}_2 \cdot oldsymbol{r})$$

> Symmetry group: $\mathcal{G} = C_{4v}^{'''} \otimes SO(3)$ > Primary order $\eta_{\alpha} = (\boldsymbol{m}_1, \boldsymbol{m}_2)_{\alpha}$

≻ Transforms as
$$\Gamma = E_5 \otimes \Gamma^{S=1}$$

IOWA STATE UNIVERSITY

Extended point group $C_{4\nu}^{\prime\prime\prime}$


```
Gell-Mann matrices \lambda^{j} (9x)
```

$$\Lambda_{A,B}^{m\equiv(r,j),\mu} = \tau_{ab}^r \lambda_{\alpha\beta}^{j,\mu}.$$

IOWA STATE UNIVERSITY

Singlet (scalar) vestigial orders

$$\Gamma \otimes \Gamma = (A_1 \oplus B'_2 \oplus A'_2 \oplus B_1) \otimes (\Gamma^0 \oplus \Gamma^1 \oplus \Gamma^2)$$

S=0 singlet in spin space: scalar vestigial orders

$$\phi_{m\equiv(r,j)}^{\mu} = \sum_{A,B} \eta_A \Lambda_{A,B}^{m,\mu} \eta_B, \text{ with } \lambda_{\alpha\beta}^{0,0} = \delta_{\alpha\beta}$$

 $\phi_{(0,0)} = \mathbf{m}_1 \cdot \mathbf{m}_1 + \mathbf{m}_2 \cdot \mathbf{m}_2$ A_1 amplitude fluctuations (no broken symmetry

 $\phi_{(1,0)} = 2\mathbf{m}_1 \cdot \mathbf{m}_2$ Composite order transforming as B'_2 (CSDW)

 $\phi_{(3,0)} = \mathbf{m}_1 \cdot \mathbf{m}_1 - \mathbf{m}_2 \cdot \mathbf{m}_2$ Composite order transforming as B_1 (nematic)

IOWA STATE UNIVERSITY

Nematic composite *B*₁ order

 $\phi_{(3,0)} = \mathbf{m}_1 \cdot \mathbf{m}_1 - \mathbf{m}_2 \cdot \mathbf{m}_2$ Composite order transforming as B_1 (nematic)

- Translations t₁, t₂ preserved
- C_4 and σ_d broken

Real-space: bond order

Primary order: **SSDW**

Conjugacy class		$C_4 \qquad \sigma_v$							σ_d					
Point group $C_{4v}^{\prime\prime\prime}$	\mathcal{C}_1'''	\mathcal{C}_2'''	$\mathcal{C}_3^{\prime\prime\prime}$	\mathcal{C}_4'''	\mathcal{C}_5'''	\mathcal{C}_6'''	\mathcal{C}_7'''	\mathcal{C}_8'''	\mathcal{C}_9'''	$\mathcal{C}_{10}^{\prime\prime\prime}$	$\mathcal{C}_{11}^{\prime\prime\prime\prime}$	$\mathcal{C}_{12}^{\prime\prime\prime\prime}$	$\mathcal{C}_{13}^{\prime\prime\prime\prime}$	$\mathcal{C}_{14}^{\prime\prime\prime}$
$\overline{B_1}$	1	1	1	1	1	1	-1	-1	1	1	1	1	-1	-1

IOWA STATE UNIVERSITY

CDW (checkerboard) composite B'_2 order

 $\phi_{(1,0)} = 2\mathbf{m}_1 \cdot \mathbf{m}_2$ Composite order transforming as B'_2 (SVDW)

- Translations t₁, t₂
 broken
- C_4 and σ_v broken

Real-space: site order

Primary order: CSDW

Conjugacy class	t_1, t_2					$C_4 \qquad \sigma_v$					σ_d			
Point group $C_{4v}^{\prime\prime\prime}$	\mathcal{C}_1'''	$\mathcal{C}_2^{\prime\prime\prime}$	\mathcal{C}_3'''	\mathcal{C}_4'''	\mathcal{C}_5'''	$\mathcal{C}_6^{\prime\prime\prime\prime}$	\mathcal{C}_7'''	\mathcal{C}_8'''	\mathcal{C}_9'''	${\cal C}_{10}^{\prime\prime\prime}$	$\mathcal{C}_{11}^{\prime\prime\prime}$	$\mathcal{C}_{12}^{\prime\prime\prime}$	$\mathcal{C}_{13}^{\prime\prime\prime\prime}$	$\mathcal{C}_{14}^{\prime\prime\prime}$
B'_2	1	-1	1	1	-1	1	-1	1	-1	1	1	-1	1	-1
B_1	1	1	1	1	1	1	-1	-1	1	1	1	1	-1	-1

IOWA STATE UNIVERSITY

Department of Physics and Astronomy

(Pseudo)-vector vestigial orders

$$\Gamma \otimes \Gamma = (A_1 \oplus B'_2 \oplus A'_2) \oplus B_1) \otimes (\Gamma^0 \oplus \Gamma^1 \oplus \Gamma^2)$$

S=1 triplet in spin space: vector vestigial orders

$$\phi_{m=(r,j)}^{\mu} = \sum_{A \ R} \eta_A \Lambda_{A,B}^{m,\mu} \eta_B, \text{ with } \lambda_{\alpha\beta}^{1,\mu} = i\epsilon_{\alpha\beta\mu}$$
$$\phi_{(2,1)} = 2\mathbf{m}_1 \times \mathbf{m}_2$$

Composite order transforming as A'_2 :

- \succ preserves C₄
- ➤ breaks mirrors
- ➤ breaks translation

Primary order: spin-vortex crystal

IOWA STATE UNIVERSITY

Real-space:

plaquette order

Tensorial vestigial orders

$$\Gamma \otimes \Gamma = (A_1 \oplus B'_2 \oplus A'_2 \oplus B_1) \otimes (\Gamma^0 \oplus \Gamma^1 \oplus \Gamma^2)$$

S=2 symmetric tensor in spin space

$$\phi_{m\equiv(r,j)}^{\mu} = \sum_{A,B} \eta_A \Lambda_{A,B}^{m,\mu} \eta_B, \text{ with } \lambda_{\alpha\beta}^{2,(\mu,\mu')} = \frac{1}{2} \left(\delta_{\alpha\mu} \delta_{\beta\mu'} + \delta_{\alpha\mu'} \delta_{\beta\mu} \right) - \frac{1}{3} \delta_{\alpha\beta} \delta_{\mu\mu'}.$$

$$\phi_{(0,2)}^{\mu\mu'} = m_1^{\mu} m_1^{\mu'} + m_2^{\mu} m_2^{\mu'} - \frac{1}{3} \delta_{\alpha\beta} \left(\mathbf{m}_1 \cdot \mathbf{m}_1 + \mathbf{m}_2 \cdot \mathbf{m}_2 \right)$$

$$\phi_{(1,2)}^{\mu\mu'} = m_1^{\mu} m_2^{\mu'} + m_2^{\mu} m_1^{\mu'} - \frac{1}{3} \delta_{\mu\mu'} \left(\mathbf{m}_1 \cdot \mathbf{m}_2 + \mathbf{m}_2 \cdot \mathbf{m}_2 \right)$$

$$\phi_{(3,2)}^{\mu\mu\mu'} = m_1^{\mu} m_1^{\mu'} - m_2^{\mu} m_2^{\mu'} - \frac{1}{3} \delta_{\mu\mu'} \left(\mathbf{m}_1 \cdot \mathbf{m}_1 - \mathbf{m}_2 \cdot \mathbf{m}_2 \right)$$

Composite tensorial orders:

 $\succ \phi_{(0,2)}$ transforms spatially as A_1 : nematicity purely in spin space $(NiGa_2S_4)$

Presence of spin-orbit coupling would induce nematicity in realspace as well. [1] Chandra, Coleman (1991), [2] Nakatsuji, Science (2005).

IOWA STATE UNIVERSITY

Materials: vestigial orders in iron-based superconductors

- Size of vestigial phase depends on microscopics, size of fluctuations
 - Vestigial orders (often) found on hole-doped side
 - Not found on electron-doped side: joint first-order transiton
- Vestigial order can be induced by breaking corresponding symmetry (1144)
 - Path to control magnetic order

[1] S. Nandi et al., PRL 104, 057006 (2010); [2] Taddei et al., PRB (2016); [3] W. R. Meier et al., npj Quantum Materials (2018).

IOWA STATE UNIVERSITY

Controlling magnetic order

How can we control phases?

- Doping, pressure, magnetic field
- Other possibilities

Coupling to vestigial order parameter

Simplest case: SSDW

- Apply external strain σ to cause orthorhombic distortion
- Acts as "conjugate field" for emergent order parameter φ_{nematic}
- $\Delta F = \sigma \phi_{nematic}$
- Transition temperature T_N to stripe order increases (27K in example)

[1] Kuo et al., PRB 86, 134507 (2012)

IOWA STATE UNIVERSITY

CaKFe₄As₄: coupling to SVDW emergent order

How to generate Spin Vortex Crystal magnetic order?

- Two inequivalent As sites
- Breaks glide plane (-4) symmetry
- Lowers SVC magnetic state to be ground state

 $F_{\eta} = -\frac{1}{2}\boldsymbol{\eta} \cdot (\boldsymbol{M}_1 \times \boldsymbol{M}_2).$

IOWA STATE UNIVERSITY

CaKFe₄As₄: coupling to SVDW emergent order

- Crystal structure generates conjugate field for emergent SVDW
- Lowers SVC magnetic state $\frac{\eta_c}{2|a|} = \sqrt{\frac{E_{GS}}{E_{SVC}(0)} 1}$
- First time SVC phase is experimentally realized!

IOWA STATE UNIVERSITY

Department of Physics and Astronomy

Ca

As₂

Fe

As1

Κ

CaKFe₄As₄

Summary

- Vestigial orders naturally leads to complex phase diagrams with multiple phases having comparable transition temperatures
- Powerful concept to explain complexity of quantum materials beyond competing orders
- Vestigial order can be used to control phase diagram, including the associated primary "mother" phase

[1] R. M. Fernandes, PPO, J. Schmalian, Annu. Rev. Cond. Mat., in press (2019).

IOWA STATE UNIVERSITY