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PdTe2: electronic structure
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§ Tilted Dirac dispersion (type-II)
§ Dirac point located at k = (0,0, ±0.4)
§ 0.5 eV below EF

§ Fermi surface (at EF): 
§ Hole and electron pocket at Γ
§ Electron pockets at K, K’

§ Surface states seen in ARPES

ARPES [1]:

[1] H.-J. Noh et al., PRL (2017); [2] F. Fei et al., (2017)

First-principles [2]:

Single crystals
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PdTe2: transport and superconductivity
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From [1]

§ Linear-T resistivity above 40 K 

(dominantly phonon scattering)

§ Isotropic resistivity: small anisotropy is T-

independent ⇢ 3D material

§ Flat plateau below 10 K 

§ Superconducting transition at Tc=1.7 K [2]

§ Note: robust surface superconductivity 

reported by de Visser group [3, 4]

Questions: 

§ Symmetry of SC pairing state

§ Topology of the superconducting state

§ Pairing mechanism

Superconductivity in material with strong 

spin-orbit coupling and Dirac node

[1] S. Teknowijoyo et al., PRB, (2018);

[2] J. Guggenheim et al., Helv. Phys. (1961);

[3] Leng et al., PRB (2017);

[4] Leng et al., arXiv (2019). 
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Topological SC in Dirac and Weyl semimetals

§ Time-reversal symmetric SC: Class DIII, index Z in 3D 
⇢ topological full gap SC possible

§ Time-reversal breaking SC: Class D, trivial in 3D
⇢ topological SC only possible for nodal SC
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Potential path to topological superconductivity 
➢ Induce SC in system with non-trivial normal state topology [1]

Natural candidate: Weyl semimetal borne out of Dirac semimetal 

§ Weyl SM show non-zero Chern number
Breaking inversion: Full-gap topological p-
wave SC predicted for unconventional
mechanism ("±): "%&'(Δ*) ≠ "%&' Δ, [2]

[1] X.-L. Qi et al., PRB (2010); [2] P. Hosur et al., PRB (2014). From Hosur et al., PRB (2014). 
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Potential path to topological superconductivity 
➢ Induce SC in system with non-trivial normal state topology [1]

Natural candidate: Weyl semimetal borne out of Dirac semimetal 

Breaking time-reversal symmetry:
§ Non-trivial topology only for nodal gap
§ Spin structure on Fermi surface favors 

odd-parity pairing [2]
§ Nodal topological SC predicted with 

Fermi arc surface states [2, 3] 
[1] X.-L. Qi et al., PRB (2010); [2] Sato, Ando, Rep, Prog. 
Phys. (2017); [3] T. Meng, L. Balents, PRB (2012). 

From Sato, Ando (2017). 
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Superconducting pairing states in PdTe2
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§ Assume that SC is homogeneous and transition continuous
➢ SC order transforms under one of the IRs
§ Inversion symmetry: singlet and triplet don’t mix

Character table of !"#

§ 10 possible pairing states
§ 8 preserve TRS, 2 break TRS

From Teknowijoyo
et al., PRB (2018). 



Department of Physics and Astronomy

Superconducting pairing states in PdTe2
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§ Assume that SC is homogeneous and transition continuous
➢ SC order transforms under one of the IRs
§ Inversion symmetry: singlet and triplet do not mix
§ 10 possible pairing states

§ 8 preserve time-reversal symmetry, 2 break it

From Teknowijoyo
et al., PRB (2018). 

Reduce number of possible states using input from experiment. 
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Δl ~ 0.5 Å 
for sub-mm 
size crystals

LC Tank Circuit

R. Prozorov and V. G. Kogan, Rep. Prog. Phys. (2011).

f0 ~ 14 MHz

C. T. Van-Degrift, Rev. Sci. Instrum. (1975) 

~ 400 mK

Tunnel diode resonator (TDR)

Penetration depth ! with tunnel diode resonator

Resolution

Lowest T

Resonance frequency
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Penetration depth ! using tunnel-diode resonator
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Prozorov and Giannetta, Supercond. Sci. 
Technol. 19 R41 (2006)

d-wave gap

Line nodal gap

s-wave gap

Multiband S++

Multiband S±

Full gap

Mazin, Nature (2010)

∆# $ ~ $& ((~1)

∆#($) ~ $& (( > 3)

P. Townsend 
and J. Sutton, 
Phys. Rev. 128, 
591 (1962)

9

Superconducting
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PdTe2: Low-T London penetration depth Δλ
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§ Power law fit ∆" ∝ $% gives & = 4.25 ⇢ Full gap superconductor

§ To extend low temperature fitting range $ < ./
0 = 0.4 2, dilution 

fridge experiments are ongoing

[1] S. Teknowijoyo et al., PRB, (2018). 
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BCS theory describes London penetration depth
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Fit to BCS: exponential Superconducting density

§ !-dependence of ∆# described by BCS with single, isotropic, full gap
§ Fit to BCS yields # ! = 0 = 230 ()
§ Previously measured coherence length [2]: * = 439 ()

Ginzburg-Landau parameter - = .
/ = 0.52: type-I SC 

(in agreement with measurements of 2 and 3 [2]) 

[1] S. Teknowijoyo et al., PRB (2018); [2] H. Leng et al., PRB (2017).  
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Identify nodeless SC states from symmetry analysis
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§ Exclude gap functions where symmetry enforces presence of nodes.

K

K’
M

Γ

Character 
table of !"#

$%& state: (even ⇢ singlet)
§ Singlet
§ IR requires          to be invariant 

under all elements of !"#

Fully gapped $%& ((-wave) 
state possible. 

Fermi surfaces 
around Γ point. 
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§ Exclude gap functions where symmetry enforces presence of nodes.

K

K’
M

Γ

Character 
table of !"#

$%& state: (even ⇢ singlet)
§ Singlet
§ IR requires          to be invariant 

under all elements of !"#

Fully gapped $%& ((-wave) 
state possible. 

$)& state: (even ⇢ singlet)
§ Odd under *# requires

➢ + vanishes in (-., -0) plane
➢ Line node on FS around Γ.
➢ 2" even ⇢ 2 line nodes
➢ 2) odd ⇢ 1 line node

$)& (3-wave) state has 4 line nodes 
imposed by symmetry. 

Fermi surfaces 
around Γ point. 
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Identify nodeless SC states from symmetry analysis
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§ Only 3 out of 10 states have no symmetry-enforced nodal points or lines.
§ !"#: trivial s-wave state, could be $%% or $±. 
§ !"': odd-parity p-wave state. 

§ Balian-Werthamer state on each FS. 
§ Can be topologically non-trivial. 
§ Fu-Berg criterion [1] not applicable as total number of enclosed TR 

momenta is even (two FS around Γ). 
§ )'(",,): odd-parity state that transforms as ./. 

§ Anisotropic gap. Can be adiabatically transformed to !"' state.
[1] Fu, Berg PRL (2010).  
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Topology of odd-parity states
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§ !"#: odd-parity p-wave state 

Non-trivial: Trivial:

For each FS obtain $ from 

Total topological index

Simplest texture of d(k) is non-trivial • Unlikely as no anisotropies measured

Gap of %#(",() state 

§ %#(",(): exhibits anisotropic gap
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Summary: PdTe2
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Reference: 
S. Teknowijoyo et al., PRB 98, 024508 (2018).

§ Penetration depth ! ⇢ full SC gap
§ Single gap energy scale
§ BCS fit gives ! # = 0 = 230 ()
§ Only 3 possible full-gap pairing states 

§ *+,: trivial s-wave pairing
§ *+.: odd-parity p-wave Balian-Werthamer state

§ Can be topologically non-trivial.  
§ /.(+,2): odd-parity state equivalent to *+.

§ Anisotropic gap transforming as 45

§ Microscopic theory
§ Behavior under disorder
§ Surface state SC

Outlook:


