IOWA STATE UNIVERSITY

Department of Physics and Astronomy

Nodeless superconductivity in type-II Dirac semimetal PdTe₂: London penetration depth and pairing-symmetry analysis

Peter P. Orth (Iowa State University and Ames Laboratory)

In collaboration with S. Teknowijoyo^{1, 2}, N. H. Jo^{1, 2}, M. S. Scheurer³, M. A. Tanatar^{1, 2}, K. Cho^{1, 2}, S. L. Budko^{1, 2}, P. C. Canfield^{1, 2} and R. Prozorov^{1, 2} ¹ Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA ² Ames Laboratory, Ames, Iowa 50011, USA ³ Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Superstripes Conference, Ischia, June 26, 2019

Reference:

S. Teknowijoyo et al., Phys. Rev. B 98, 024508 (2018).

Funding:

PdTe₂: electronic structure

 $P\bar{3}m1(164)$

Single crystals

 $k_{v}(A^{-1})$

0.0

ARPES [1]:

-0.5

k,=2.54c*

(a)

0.0

-1.5

Tilted Dirac dispersion (type-II)

- Dirac point located at $k = (0,0,\pm0.4)$
- 0.5 eV below E_F
- Fermi surface (at E_F):
 - Hole and electron pocket at Γ
 - Electron pockets at K, K'
- Surface states seen in ARPES

First-principles [2]:

DS7

 $k_v (Å^{-1})$

-0.5

 $\Delta k_{z} = -0.06c^{*} k_{z} = 2.61c^{*}$

[1] H.-J. Noh et al., PRL (2017); [2] F. Fei et al., (2017)

IOWA STATE UNIVERSITY

PdTe₂: transport and superconductivity

- [1] S. Teknowijoyo et al., PRB, (2018);
- [2] J. Guggenheim *et al.*, Helv. Phys. (1961);
- [3] Leng et al., PRB (2017);
- [4] Leng *et al.*, arXiv (2019).

IOWA STATE UNIVERSITY

- Linear-T resistivity above 40 K (dominantly phonon scattering)
- Isotropic resistivity: small anisotropy is Tindependent ---> 3D material
- Flat plateau below 10 K
- Superconducting transition at T_c=1.7 K [2]
- Note: robust surface superconductivity reported by de Visser group [3, 4]

Superconductivity in material with strong spin-orbit coupling and Dirac node

<u>Questions:</u>

- Symmetry of SC pairing state
- Topology of the superconducting state
- Pairing mechanism

Topological SC in Dirac and Weyl semimetals

Potential path to topological superconductivity

- Induce SC in system with non-trivial normal state topology [1]
- Time-reversal symmetric SC: Class DIII, index Z in 3D
 ...> topological full gap SC possible
- Time-reversal breaking SC: Class D, trivial in 3D
 - ---> topological SC only possible for nodal SC

Natural candidate: Weyl semimetal borne out of Dirac semimetal

From Hosur et al., PRB (2014).

• Weyl SM show non-zero Chern number **Breaking inversion:** Full-gap topological pwave SC predicted for unconventional mechanism (s^{\pm}) : $sign(\Delta_1) \neq sign(\Delta_2)$ [2]

$$\nu = \frac{1}{2} \sum_{s} \operatorname{sign} \left(\widetilde{\Delta}_{s}(\boldsymbol{k}_{s}) \right) C_{1,s}$$

[1] X.-L. Qi et al., PRB (2010); [2] P. Hosur et al., PRB (2014).

Topological SC in Dirac and Weyl semimetals

Potential path to topological superconductivity

- Induce SC in system with non-trivial normal state topology [1]
- Time-reversal symmetric SC: Class DIII, index Z in 3D
 ...> topological full gap SC possible
- Time-reversal breaking SC: Class D, trivial in 3D
 - ---> topological SC only possible for nodal SC

Natural candidate: Weyl semimetal borne out of Dirac semimetal

Breaking time-reversal symmetry:

- Non-trivial topology only for nodal gap
- Spin structure on Fermi surface favors odd-parity pairing [2]
- Nodal topological SC predicted with Fermi arc surface states [2, 3]

[1] X.-L. Qi *et al.*, PRB (2010); [2] Sato, Ando, Rep, Prog. Phys. (2017); [3] T. Meng, L. Balents, PRB (2012).

IOWA STATE UNIVERSITY

Superconducting pairing states in PdTe₂

IR	Pairing	d_n	TRS	Order parameter $\Delta i \sigma_y$	$X = \sin k_x, \text{etc.}$
A_{1g}	s wave	1	у	$a + b(X^2 + Y^2) + cZ^2$	From Teknowijovo
A_{2g}	g wave	1	у	$XZ(X^2 - 3Y^2)$	<i>et al.</i> , PRB (2018).
E_g	$e_{g(1,0)}$ wave	2	У	$a(X^2 - Y^2) + bYZ$	
E_g	$e_{g(0,1)}$ wave	2	У	aXY + bXZ	
E_g	$e_{g(1,i)}$ wave	2	n	$a(X+iY)^2 + bZ(Y+iX)$	
A_{1u}	p wave	1	у	$a(X\sigma_x + Y\sigma_y) + bZ\sigma_z$	
A_{2u}	p wave	1	У	$a(Y\sigma_x - X\sigma_y) + bX(X^2 - 3Y^2)\sigma$	ź
E_{u}	$e_{u(1,0)}$ wave	2	У	$aX(X^2 - 3Y^2)\sigma_x + bZ\sigma_y + cY\sigma_y$	Z
E_u	$e_{u(0,1)}$ wave	2	у	$aZ\sigma_x + bX(X^2 - 3Y^2)\sigma_y + cX\sigma_y$	Z.
E_u	$e_{u(1,i)}$ wave	2	n	$[aZ + ibX(X^2 - 3Y^2)](\sigma_x + i\sigma_y) + c(X$	$(+iY)\sigma_z$

- Assume that SC is homogeneous and transition continuous
- SC order transforms under one of the IRs
- Inversion symmetry: singlet and triplet don't mix

 $\Delta(\boldsymbol{k}) = (\sigma_0 \psi(\boldsymbol{k}) + \boldsymbol{d}(\boldsymbol{k}) \cdot \boldsymbol{\sigma}) \, i\sigma_y.$

- 10 possible pairing states
 - 8 preserve TRS, 2 break TRS

IOWA STATE UNIVERSITY

Character table of D_{3d}

,	E	$2C_3$	$3C_2$	i	$2S_6$	$3\sigma_d$	Basis functions
A_{1g}	1	1	1	1	1	1	$x^2 + y^2, z^2$
A_{2g}	1	1	-1	1	1	-1	$xz(x^2 - 3y^2)$
E_g	2	-1	0	2	-1	0	$(x^2 - y^2, 2xy), (yz, xz)$
A_{1u}	1	1	1	-1	-1	-1	$x(x^2 - 3y^2)$
A_{2u}	1	1	-1	-1	-1	1	z
E_u	2	-1	0	-2	1	0	(x,y)

Superconducting pairing states in PdTe₂

IR	Pairing	d_n	TRS	Order parameter $\Delta i \sigma_y$	$X = \sin k_x, \text{etc.}$
A_{1g}	s wave	1	у	$a + b(X^2 + Y^2) + cZ^2$	From Teknowijovo
A_{2g}	g wave	1	у	$XZ(X^2 - 3Y^2)$	<i>et al.</i> , PRB (2018).
E_g	$e_{g(1,0)}$ wave	2	у	$a(X^2 - Y^2) + bYZ$	
E_g	$e_{g(0,1)}$ wave	2	У	aXY + bXZ	
E_g	$e_{g(1,i)}$ wave	2	n	$a(X+iY)^2 + bZ(Y+iX)$	
A_{1u}	p wave	1	у	$a(X\sigma_x + Y\sigma_y) + bZ\sigma_z$	
A_{2u}	p wave	1	У	$a(Y\sigma_x - X\sigma_y) + bX(X^2 - 3Y^2)\sigma_y$	Z
E_{u}	$e_{u(1,0)}$ wave	2	У	$aX(X^2 - 3Y^2)\sigma_x + bZ\sigma_y + cY\sigma_y$	z
E_u	$e_{u(0,1)}$ wave	2	у	$aZ\sigma_x + bX(X^2 - 3Y^2)\sigma_y + cX\sigma_y$	z
E_u	$e_{u(1,i)}$ wave	2	n	$[aZ + ibX(X^2 - 3Y^2)](\sigma_x + i\sigma_y) + c(X$	$(+iY)\sigma_z$

- Assume that SC is homogeneous and transition continuous
- SC order transforms under one of the IRs
- Inversion symmetry: singlet and triplet do not mix
- 10 possible pairing states
 - 8 preserve time-reversal symmetry, 2 break it

Reduce number of possible states using input from experiment.

Penetration depth λ with tunnel diode resonator

R. Prozorov and V. G. Kogan, Rep. Prog. Phys. (2011).

C. T. Van-Degrift, Rev. Sci. Instrum. (1975)

IOWA STATE UNIVERSITY

Penetration depth λ using tunnel-diode resonator

IOWA STATE UNIVERSITY

Department of Physics and Astronomy

9

$PdTe_2$: Low-T London penetration depth $\Delta\lambda$

- Power law fit $\Delta \lambda \propto T^n$ gives $n = 4.25 \rightarrow$ Full gap superconductor
- To extend low temperature fitting range $T < \frac{T_c}{3} = 0.4 K$, dilution fridge experiments are ongoing

[1] S. Teknowijoyo *et al.*, PRB, (2018).

10

BCS theory describes London penetration depth

- *T*-dependence of $\Delta \lambda$ described by BCS with single, isotropic, full gap
- Fit to BCS yields $\lambda(T = 0) = 230 nm$
- Previously measured coherence length [2]: $\xi = 439 nm$

Ginzburg-Landau parameter
$$\kappa = \frac{\lambda}{\xi} = 0.52$$
: type-I SC (in agreement with measurements of *M* and χ [2])

[1] S. Teknowijoyo et al., PRB (2018); [2] H. Leng et al., PRB (2017).

IOWA STATE UNIVERSITY

Identify nodeless SC states from symmetry analysis

Exclude gap functions where symmetry enforces presence of nodes.

Character	25 .
table of D_{3d}	A_{1g}
	4

	E	$2C_3$	$3C_2$	i	$2S_6$	$3\sigma_d$	Basis functions
4_{1g}	1	1	1	1	1	1	$x^2 + y^2, z^2$
4_{2g}	1	1	$^{-1}$	1	1	-1	$xz(x^2 - 3y^2)$
E_g	2	-1	0	2	-1	0	$(x^2 - y^2, 2xy), (yz, xz)$
1_{1u}	1	1	1	-1	-1	-1	$x(x^2 - 3y^2)$
A_{2u}	1	1	-1	-1	-1	1	z
E_u	2	-1	0	-2	1	0	(x,y)

Fermi surfaces around Γ point.

$A_{1,q}$ state: (even \rightarrow singlet)

- Singlet $\Delta(\mathbf{k}) = i\sigma_y \psi(\mathbf{k})$
- IR requires ψ(k) to be invariant under all elements of D_{3d}
 ψ(k) = const. > 0

Fully gapped A_{1g} (*s*-wave) state possible.

Identify nodeless SC states from symmetry analysis

Exclude gap functions where symmetry enforces presence of nodes.

Character table of D_{3d}

	E	$2C_3$	$3C_2$	i	$2S_6$	$3\sigma_d$	Basis functions
A_{1g}	1	1	1	1	1	1	$x^2 + y^2, z^2$
A_{2g}	1	1	$^{-1}$	1	1	-1	$xz(x^2 - 3y^2)$
E_g	2	-1	0	2	-1	0	$(x^2 - y^2, 2xy), (yz, xz)$
A_{1u}	1	1	1	-1	-1	-1	$x(x^2 - 3y^2)$
A_{2u}	1	1	-1	-1	-1	1	z
E_u	2	-1	0	-2	1	0	(x,y)

Fermi surfaces around Γ point.

 A_{2g} state: (even \rightarrow singlet)

• Odd under σ_d requires

 $\psi(k_x, k_y, k_z) = -\psi(-k_x, k_y, k_z)$

- $\succ \psi$ vanishes in (k_y, k_z) plane
- \succ Line node on FS around Γ .
- $\succ C_3$ even \rightarrow 2 line nodes
- $\succ C_2 \text{ odd } \rightarrow 1 \text{ line node}$

 A_{2g} (g-wave) state has 4 line nodes imposed by symmetry.

A_{1g} state: (even \rightarrow singlet)

- Singlet $\Delta(\mathbf{k}) = i\sigma_y \psi(\mathbf{k})$
- IR requires ψ(k) to be invariant under all elements of D_{3d} ψ(k) = const. > 0

Fully gapped A_{1g} (*s*-wave) state possible.

Identify nodeless SC states from symmetry analysis

IR	Pairing	d_n	TRS	Order parameter $\Delta i \sigma_y$	Minimal number of nodes per FS	Topology
A_{1g}	s wave	1	у	$a + b(X^2 + Y^2) + cZ^2$	0	trivial
A_{2g}	g wave	1	у	$XZ(X^2 - 3Y^2)$	4 nodal lines	
E_g	$e_{g(1,0)}$ wave	2	У	$a(X^2 - Y^2) + bYZ$	2 nodal lines	
E_g	$e_{g(0,1)}$ wave	2	у	aXY + bXZ	2 nodal lines	
E_{g}	$e_{g(1,i)}$ wave	2	n	$a(X+iY)^2 + bZ(Y+iX)$	2 nodal points	
A_{1u}	p wave	1	у	$a(X\sigma_x + Y\sigma_y) + bZ\sigma_z$	0	trivial/top.
A24	p wave	1	y	$a(Y\sigma_x - X\sigma_y) + bX(X^2 - 3Y^2)\sigma_z$	2 nodal points	
E_u	$e_{u(1,0)}$ wave	2	У	$aX(X^2 - 3Y^2)\sigma_x + bZ\sigma_y + cY\sigma_z$	0	trivial/top.
E_u	$e_{u(0,1)}$ wave	2	у	$aZ\sigma_x + bX(X^2 - 3Y^2)\sigma_y + cX\sigma_z$	2 nodal points	
E_u	$e_{u(1,i)}$ wave	2	n	$[aZ + ibX(X^2 - 3Y^2)](\sigma_x + i\sigma_y) + c(X + iY)\sigma_z$	2 nodal points [44]	

- Only 3 out of 10 states have no symmetry-enforced nodal points or lines.
 - $A_{1,g}$: trivial s-wave state, could be s^{++} or s^{\pm} .
 - A_{1u}: odd-parity p-wave state.
 - Balian-Werthamer state on each FS.
 - Can be topologically non-trivial.
 - Fu-Berg criterion [1] not applicable as total number of enclosed TR momenta is even (two FS around Γ).
 - $e_{u(1,0)}$: odd-parity state that transforms as k_x .
 - Anisotropic gap. Can be adiabatically transformed to A_{1u} state.

[1] Fu, Berg PRL (2010).

14

Topology of odd-parity states

A_{1u}: odd-parity p-wave state

Non-trivial: $\nu_{total} = 2$

Trivial: $\nu_{total} = 0$

For each FS obtain ν from

$$u = rac{1}{2} \sum_{s} \operatorname{sign} \left(\widetilde{\Delta}_{s}(\boldsymbol{k}_{s}) \right) C_{1,s}$$

Total topological index

$$u_{\text{total}} = \nu_1 + \nu_2$$

• $e_{u(1,0)}$: exhibits anisotropic gap Gap of $e_{u(1,0)}$ state

Simplest texture of d(k) is non-trivial

Unlikely as no anisotropies measured

IOWA STATE UNIVERSITY

15

Summary: PdTe₂

- Penetration depth $\lambda \rightarrow$ full SC gap
- Single gap energy scale
- BCS fit gives $\lambda(T = 0) = 230 nm$
- Only 3 possible full-gap pairing states

Outlook:

- Microscopic theory
- Behavior under disorder
- Surface state SC

- A_{1g}: trivial s-wave pairing
 - A_{1u} : odd-parity p-wave Balian-Werthamer state
 - Can be topologically non-trivial.
- $e_{u(1,0)}$: odd-parity state equivalent to A_{1u}
 - Anisotropic gap transforming as k_x

Reference:

S. Teknowijoyo et al., PRB 98, 024508 (2018).

Thank you for your attention!

IOWA STATE UNIVERSITY

16