IOWA STATE UNIVERSITY

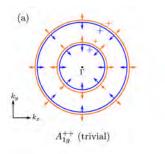
Department of Physics and Astronomy

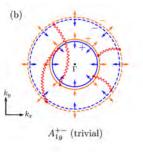
Electron irradiation effects on superconductivity in PdTe₂: An application of a generalized Anderson theorem

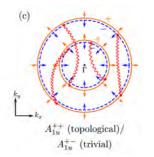
Peter P. Orth (Iowa State University & Ames Laboratory)

Collaboration with M. S. Scheurer, Y. Lee, L. Ke, O. Cavani, M. Konczykowski, & groups of P. Canfield and R. Prozorov

Virtual March Meeting, March 18, 2021







References:

- E. I. Timmons *et al.*, PRR **2**, 023140 (2020)
- S. Teknowijoyo *et al.*, PRB **98**, 024508 (2018)

Office of Science

5. DEPARTMENT OF ENERG

Collaborators

Theory collaborators:

- M. S. Scheurer (Harvard)
- Y. Lee, L. Ke (Ames Lab)

M. S. Scheurer

L. Ke

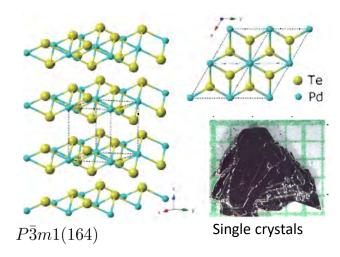
Experimental collaborators:

- O. Cavani, M. Konczykowski (Ecole Polytechnique)
- Groups of P. Canfield (Ames Lab) & R. Prozorov (Ames Lab)

P. Canfield

R. Prozorov

PdTe₂: crystal and electronic structure



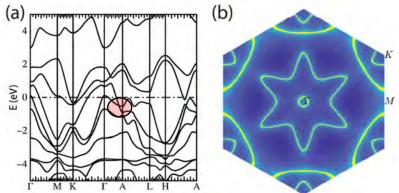
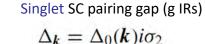


FIG. 7. (a) Band structure of PdTe₂. The horizontal dot-dashed line indicates the Fermi level. (b) Fermi surface contour in PdTe₂ for the $k_z = 0$ (Γ -*M*-*K*) plane.

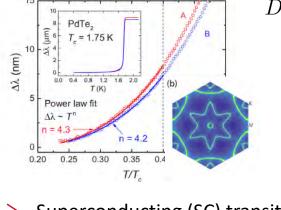
- Centrosymmetric material, D_{3h} point group symmetry
- Type-II Dirac semimetal: nodal point 0.5 eV below E_F
- > Significant spin-orbit coupling strength
- > Fermi surface: 2 hole pockets around G and 2 electron pockets around K

```
    H.-J. Noh et al., (2017).
    F. Fei et al., (2017).
    E. I. Timmons et al., (2020).
    S. Teknowijoyo et al. (2018).
    deVisser et al. (2018).
```



Triplet SC pairing gap (u IRs)

```
\Delta_k = \sum (d_k)_j \sigma_j i \sigma_2
```



Superconductivity in PdTe₂

IR	Pairing	d_n	TRS	Order parameter $\Delta i \sigma_y$	Minimal number of nodes per FS	Topology
A_{1g}	s wave	1	у	$a + b(X^2 + Y^2) + cZ^2$	0	trivial
A_{2g}	g wave	1	У	$XZ(X^2 - 3Y^2)$	4 nodal lines	
	$e_{g(1,0)}$ wave	2	У	$a(X^2 - Y^2) + bYZ$	2 nodal lines	
$E_g \\ E_g$	$e_{g(0,1)}$ wave	2	У	aXY + bXZ	2 nodal lines	
E_g	$e_{g(1,i)}$ wave	2	n	$a(X+iY)^2+bZ(Y+iX)$	2 nodal points	
4 _{1u}	p wave	1	у	$a(X\sigma_x + Y\sigma_y) + bZ\sigma_z$	0	trivial/top.
A_{2u}	p wave	1	у	$a(Y\sigma_x - X\sigma_y) + bX(X^2 - 3Y^2)\sigma_z$	2 nodal points	
E_{u}	$e_{u(1,0)}$ wave	2	у	$aX(X^2 - 3Y^2)\sigma_x + bZ\sigma_y + cY\sigma_z$	0	trivial/top.
E_u	$e_{u(0,1)}$ wave	2	У	$aZ\sigma_x + bX(X^2 - 3Y^2)\sigma_y + cX\sigma_z$	2 nodal points	
E_u	$e_{u(1,i)}$ wave	2	n	$[aZ + ibX(X^2 - 3Y^2)](\sigma_x + i\sigma_y) + c(X + iY)\sigma_z$	2 nodal points [44]	

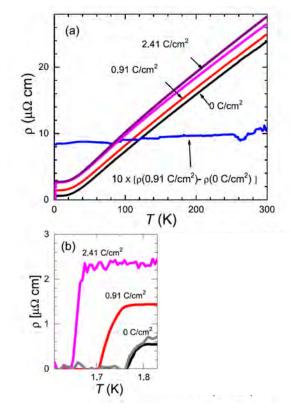
- > Superconducting (SC) transition T_c = 1.75 K [1], weak-coupling BCS & type-I SC [2, 3]
- > Penetration depth measurements yield a fully gapped SC state [2, 3]
- > Only 3 out of 10 possible pairing states have no symmetry enforced nodes
 - > A_{1g} : topologically trivial s-wave state. Could be A_{1g}^{++} or A_{1g}^{+-} .
 - > A_{1u} : odd-parity p-wave state. Balian-Werthamer state on each FS.
 - > $e_{u(1,0)}$: anisotropic odd-parity state that transforms like k_x .

IOWA STATE UNIVERSITY

 [1] Guggenheim et al.
 (1961); Hull (1965).
 [2] S. Teknowijoyo et al. (2018);
 [3] deVisser et al.
 (2017, 2018, 2020)
 [4] Fu, Berg (2010).

Whether trivial or non-trivial depends on microscopics. Fu-Berg criterion [4] not applicable as total # of enclosed TR momenta is even.

Electron irradiation effects on superconductivity and transport

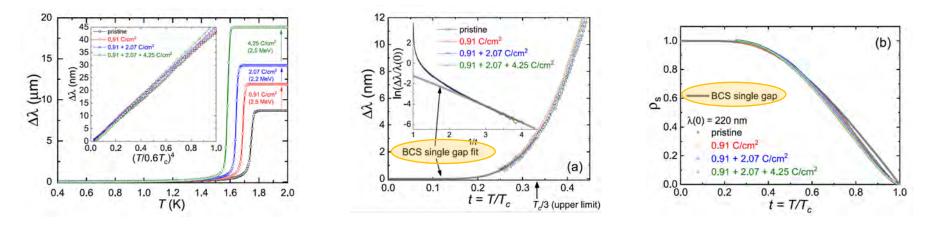


Dose (C/cm ²)	$n_e ({ m m}^{-3})$	$n_h ({ m m}^{-3})$	$\mu_e (\mathrm{m^2/V~s})$	$\mu_h (\mathrm{m}^2/\mathrm{V}\mathrm{s})$	τ_e^{-1} (meV)	τ_h^{-1} (meV)	ℓ_e (nm)	ℓ_h (nm)
0	$4.2(1) \times 10^{27}$	$2.2(1) \times 10^{27}$	0.10(1)	0.28(1)	70(2)	26(2)	344(5)	725(5)
1.33	$4.2(1) \times 10^{27}$	$2.2(1) \times 10^{27}$	0.05(1)	0.14(1)	140(2)	53(2)	172(5)	363(5)

- > Electron irradiation (2.5 MeV) creates point-like defects
- > Resistivity curves shift up following Matthiessen rule
- > Carrier densities unchanged
- > Mobilities reduced by about a factor of two for 1.33 C/cm² dose
- Superconducting T_c decreases under irradiation

[1] Timmons et al., PRR (2020).

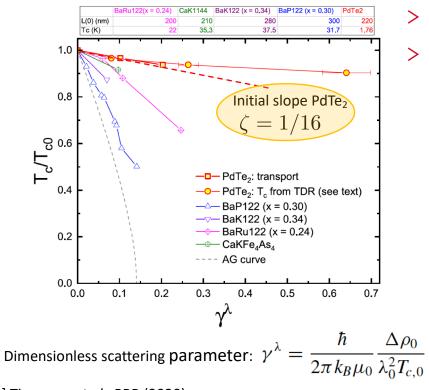
London penetration depth under irradiation



- > SC state can still be described by a single isotropic and full gap energy scale
 - > Sets stringent limits on degree of anisotropy required to explain T_c reduction of A_{1q}^{++} state

[1] Timmons *et al.*, PRR (2020).

T_c suppression under irradiation



[1] Timmons *et al.*, PRR (2020).

IOWA STATE UNIVERSITY

Anderson (1959), Abrikosov, Gorkov (1959), Hohenberg (1964), Golubov, Mazin (1997)

- Slow suppression of T_c with increased scattering
- Initial slope ζ of T_c suppression $\delta T_c/T_{c,0}$
 - > describes fitness of SC order with respect

to non-magnetic disorder

- Measures how many scattering events are pair breaking
- > Yields information about pairing state
- > Anderson theorem (isotropic s-wave): $\delta T_c/T_{c,0} = 0$

> Abrikosov-Gorkov law (magnetic disorder
for isotropic s-wave):
$$\delta T_c/T_{c,0} = -\frac{\pi^2}{2}\gamma^{\lambda}$$

Generalized Anderson theorem

Mean-field SC Hamiltonian with (non-)magnetic disorder $H_0 + \Delta H = \frac{1}{2} \sum_{k,k'} \Phi_{k\alpha}^{\dagger} (\hat{h}^{\text{BdG}})_{k\alpha,k'\alpha'} \Phi_{k'\alpha'}^{\bigstar} \cdot \frac{\text{Nambu spinor}}{\Phi_{k\alpha} = (c_{k\alpha}, T_{\alpha\beta}c_{-k\beta}^{\dagger})^T}$

BdG Hamiltonian

$$\hat{h}_{n}^{\text{BdG}} = \begin{pmatrix} \hat{h} & 0\\ 0 & -\hat{h} \end{pmatrix}, \text{ Normal state Bloch Hamiltonian } \hat{h}_{k\alpha,k'\alpha'} = \delta_{k,k'}(\hat{h}_{k})_{\alpha\alpha'}$$

$$\hat{h}_{\Delta}^{\text{BdG}} = \begin{pmatrix} 0 & \hat{D}\\ \hat{D}^{\dagger} & 0 \end{pmatrix}, \text{ SC pairing function } (\hat{D})_{k\alpha,k'\alpha'} = \delta_{k,k'}(\Delta_{k}T^{\dagger})_{\alpha\alpha'}$$

$$\hat{h}_{W}^{\text{BdG}} = \begin{pmatrix} \hat{W}^{+} + \hat{W}^{-} & 0\\ 0 & -\hat{W}^{+} + \hat{W}^{-} \end{pmatrix}, \text{ Disorder:}$$

$$\cdot \quad t_{W} = +: \text{ non-magnetic}$$

$$\cdot \quad t_{W} = -: \text{ magnetic}$$

Generalized Anderson theorem

Mean-field SC Hamiltonian with (non-)magnetic disorder **Generalized Anderson theorem** $H_0 + \Delta H = \frac{1}{2} \sum_{k,k'} \Phi^{\dagger}_{k\alpha}(\hat{h}^{\text{BdG}})_{k\alpha,k'\alpha'} \Phi_{k'\alpha'}.$ $[\hat{h}, \hat{D}]_{-} = 0$ and $[\hat{W}, \hat{D}]_{-t_{W}} = 0$ Nambu spinor **BdG Hamiltonian** $\Phi_{\boldsymbol{k}\alpha} = (c_{\boldsymbol{k}\alpha}, T_{\alpha\beta}c_{-\boldsymbol{k}\beta}^{\dagger})^T$ $\hat{h}_{n}^{\text{BdG}} = \begin{pmatrix} \hat{h} & 0\\ 0 & -\hat{h} \end{pmatrix}$, Normal state Bloch Hamiltonian $\hat{h}_{k\alpha,k'\alpha'} = \delta_{k,k'}(\hat{h}_{k})_{\alpha\alpha'}$ Requires gap to be identical at points $\hat{h}^{\text{BdG}}_{\Delta} = \begin{pmatrix} 0 & \hat{\mathcal{D}} \\ \hat{\mathcal{D}}^{\dagger} & 0 \end{pmatrix}$, SC pairing function $(\hat{\mathcal{D}})_{k\alpha,k'\alpha'} = \delta_{k,k'} (\Delta_k T^{\dagger})_{\alpha\alpha'}$ connected by disorder Naturally holds $\left[\Delta_{s}(\boldsymbol{k})-t_{W}\Delta_{s'}(\boldsymbol{k}')\right]\left\langle\phi_{\boldsymbol{k}}^{s}\right|W\left|\phi_{\boldsymbol{k}'}^{s'}\right\rangle$ $\hat{h}_{W}^{\text{BdG}} = \begin{pmatrix} \hat{W}^{+} + \hat{W}^{-} & 0\\ 0 & -\hat{W}^{+} + \hat{W}^{-} \end{pmatrix}, \text{ Disorder:}$ $\mathbf{t}_{W} = +: \text{ non-magnetic}$ in normal state eigenbasis $(\epsilon_{m kn} - \epsilon_{m kn'}) \langle \phi_{m kn} | \Delta_{m k} T^{\dagger} | \phi_{m kn'}
angle = 0$ Gap unaffected by disorder if Normal state eigenbasis $\left[\hat{h}_{v}^{\mathrm{BdG}}+\hat{h}_{W}^{\mathrm{BdG}},\ \hat{h}_{\Lambda}^{\mathrm{BdG}}\right]_{+}=0,$ $h_{\mathbf{k}}|\phi_{\mathbf{k}n}\rangle = \sigma_0 \epsilon_{\mathbf{k}n} |\phi_{\mathbf{k}n}\rangle$

Pair breaking scattering & disorder sensitivity

Pair breaking scattering between points where gap is not identical

$$C_{\boldsymbol{k}\boldsymbol{s},\boldsymbol{k}'\boldsymbol{s}'} := \left[\Delta_{\boldsymbol{s}}(\boldsymbol{k}) - t_{W}\Delta_{\boldsymbol{s}'}(\boldsymbol{k}')\right] \left\langle \phi_{\boldsymbol{k}}^{\boldsymbol{s}} \middle| W \middle| \phi_{\boldsymbol{k}'}^{\boldsymbol{s}'} \right\rangle$$

- t_w = +: non-magnetic disorder
- t_w = : magnetic disorder
- > SC disorder sensitivity parameter

$$\zeta = \frac{\sum_{\boldsymbol{k},\boldsymbol{k}'}^{\mathrm{FS}} \sum_{\boldsymbol{s},\boldsymbol{s}'} |C_{\boldsymbol{k}\boldsymbol{s},\boldsymbol{k}'\boldsymbol{s}'}|^2}{2 \operatorname{tr}[W^{\dagger}W] \sum_{\boldsymbol{k}}^{\mathrm{FS}} \sum_{\boldsymbol{s}} |\Delta_{\boldsymbol{s}}(\boldsymbol{k})|^2}$$

$$FS \text{ average of violation} of generalized Anderson theorem$$

$$SC \text{ order parameter} \left\{ \phi_k^{s'} | \Delta_k (i\sigma_2)^{\dagger} | \phi_k^{s} \right\} = \delta_{s,s'} \Delta_s(k)$$

$$A_{1g}: \Delta_s(k) = \Delta_0(k)$$

> Slope of Tc suppression determined by ζ

$$\delta T_c/T_{c,0}\sim -rac{\pi}{4T_{c,0}} au^{-1}\zeta$$

IOWA STATE UNIVERSITY

Normal state eigenbasis $h_{k} |\phi_{kn}\rangle = \sigma_{0} \epsilon_{kn} |\phi_{kn}\rangle$

Disorder sensitivity parameter

> SC disorder sensitivity parameter

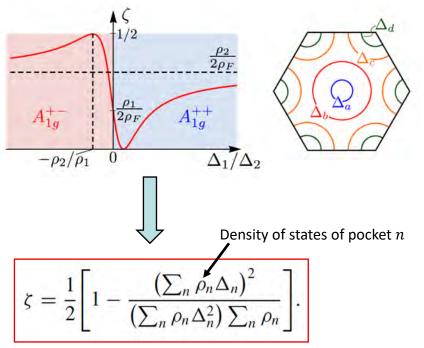
$$\zeta = \frac{\sum_{\boldsymbol{k},\boldsymbol{k}'}^{\mathrm{FS}} \sum_{\boldsymbol{s},\boldsymbol{s}'} |C_{\boldsymbol{k}\boldsymbol{s},\boldsymbol{k}'\boldsymbol{s}'}|^2}{2 \operatorname{tr}[W^{\dagger}W] \sum_{\boldsymbol{k}}^{\mathrm{FS}} \sum_{\boldsymbol{s}} |\Delta_{\boldsymbol{s}}(\boldsymbol{k})|^2}.$$

> Slope of Tc suppression determined by ζ

$$\delta T_c/T_{c,0} \sim -\frac{\pi}{4T_{c,0}}\tau^{-1}\zeta$$

Abrikosov, Gorkov (1959), Hohenberg (1964), Golubov, Mazin (1997), Cavanagh, Brydon (2020), Michaeli, Fu (2012), Scheurer (2016); Timmons *et al.* (2020).

Isotropic multi-band SC

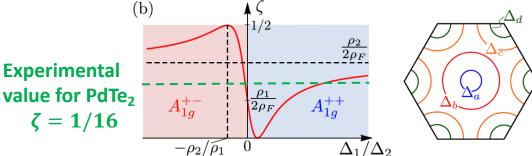


Timmons *et al.*, PRR (2020).

Gap anisotropies in PdTe₂ required for observed T_c suppression

C_1	ν	$(\Delta_1/\Delta_2)_1$	$(\Delta_1/\Delta_2)_2$
$\{a\}$	7.5×10^{-3}	5.6	-3.3
{ <i>b</i> }	0.40	2.1	0.32
$\{c\}$	2.1	2.8	0.48
$\{d\}$	0.034	3.3	-0.98
$\{a, b\}$	0.41	2.1	0.33
$\{a, c\}$	2.1	2.8	0.48
$\{a, d\}$	0.042	3.1	-0.78
$\{c, d\}$	2.4	3.0	0.47

 $y = \sum_{n=0}^{\infty} \frac{1}{\sqrt{\sum_{n=0}^{\infty} \frac{1}{2}}} \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{\sqrt{\sum_{n=0}^{\infty} \frac{1}{2}}} \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{\sqrt{\sum_{n=0}^{\infty} \frac{1}{2}}} \sum_{n=0}^{\infty} \sum_{n=0}^$



>
$$A_{1g}^{++}$$
 requires $\Delta_1/\Delta_2 = 2.1$

Substantial anisotropy necessary for A_{1g}^{++} state to be consistent with T_c suppression

>
$$A_{1g}^{+-}$$
 can be isotropic $\Delta_1/\Delta_2 = -0.98$

Unconventional isotropic A_{1g}^{+-} state is most likely candidate.

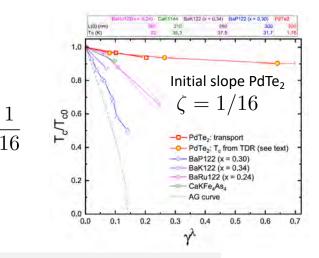
$$\Delta_a = \Delta_b = \Delta_c = \Delta_2, \Delta_d = \Delta_1.$$

Sign change between three inner and small outer most pocket at K point.

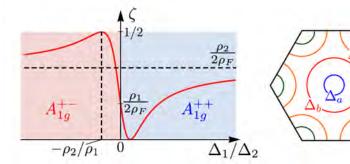
Timmons et al., PRR (2020).

Summary

- > Penetration depth $\lambda \bowtie$ single isotropic full SC gap
- > Slow but finite T_c suppression under electron irradiation $\triangleright \zeta = \frac{1}{16}$
- > Minimal required anisotropy for s⁺⁺ state: $\Delta_1/\Delta_2 \approx 2.1$
- > Minimal required anisotropy for s⁺⁻ state: $\Delta_1/\Delta_2 \approx -0.98$



Unconventional A_{1g}^{+-} state more likely than A_{1g}^{++} due to weak observed anisotropy.



References:

- E. I. Timmons *et al.*, PRR **2**, 023140 (2020)
- S. Teknowijoyo et al., PRB 98, 024508 (2018)

Thank you for your attention!

Disorder sensitivity parameter

> SC disorder sensitivity parameter

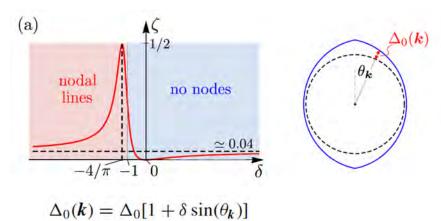
$$\zeta = \frac{\sum_{\boldsymbol{k},\boldsymbol{k}'}^{\mathrm{FS}} \sum_{\boldsymbol{s},\boldsymbol{s}'} |C_{\boldsymbol{k}\boldsymbol{s},\boldsymbol{k}'\boldsymbol{s}'}|^2}{2 \operatorname{tr}[W^{\dagger}W] \sum_{\boldsymbol{k}}^{\mathrm{FS}} \sum_{\boldsymbol{s}} |\Delta_{\boldsymbol{s}}(\boldsymbol{k})|^2}.$$

> Slope of Tc suppression determined by ζ

$$\delta T_c / T_{c,0} \sim -\frac{\pi}{4T_{c,0}} \tau^{-1} \zeta$$

Abrikosov, Gorkov (1959), Hohenberg (1964), Golubov, Mazin (1997), Cavanagh, Brydon (2020), Michaeli, Fu (2012), Scheurer (2016); Timmons *et al.* (2020).

Anisotropic s-wave



$$\implies \zeta = \frac{(32 - 3\pi^2)\delta^2}{16(6 + 3\pi\delta + 4\delta^2)}.$$

Timmons et al., PRR (2020).