IOWA STATE UNIVERSITY

Department of Physics and Astronomy

The Future of Computation: Unleashing the Power of Quantum Computers

Peter P. Orth (Iowa State University & Ames Laboratory)

Collaboration with Josh Aftergood, Noah Berthusen, I-Chi Chen, Joao Getelina, Niladri Gomes, Kai-Ming Ho, Thomas Iadecola, Anirban Mukherjee, Cai-Zhuang Wang, Yongxin Yao, Feng Zhang (Iowa State University & Ames Laboratory)

Physics Colloquium, MSU Mankato, April 11, 2022

References:

- I.-C. Chen et al., arXiv:2203.08291 (2022)
- N. Berthusen et al. arXiv:2112.12654 (2021)
- N. Gomes et al., Adv. Qu. Tech. 2100114 (2021)
- Y. Yao et al., PRX Quantum 2, 030307 (2021)

What is a quantum computer?

A quantum computer is a programmable computing device that works according to the fundamental physical laws of quantum mechanics.

Properties of a digital quantum computer

- Contains qubits = quantum mechanical 2-level systems = Spin-1/2
 - > Sounds similar to a classical bit {0, 1}, but is a totally different beast
 - > Can be in a superposition of two basis states |0> and |1>

IOWA STATE UNIVERSITY

Bloch sphere

Quantum gate operations

Properties of a digital quantum computer

- Contains qubits = quantum mechanical 2-level systems
- > Quantum gate operations act on qubits and change their states
 - > Sounds similar to classical gates {NOT, OR, ...}, but must be reversible
 - > Single-qubit gates is unitary 2x2 matrix [SU(2)] = Rotations on Bloch sphere

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \implies X|0\rangle = |1\rangle, X|1\rangle = |0\rangle$$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \longrightarrow \begin{array}{l} H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \\ H|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \end{array}$$

- X gate flips qubit. Acts like a NOT gate.
- > H: generates superposition

(Hadamard gate).

Multi-qubit gates and entanglement

Properties of a digital quantum computer

- Contains qubits = quantum mechanical 2-level systems
- > Quantum gate operations act on qubits and change their states
 - > Sounds similar to classical gates {NOT, OR, ...}, but must be reversible
 - > Single-qubit gates is unitary 2x2 matrix [SU(2)] = Rotations on Bloch sphere
 - > Multi-qubit gates are unitary rotations in SU(2^N)

Controlled-NOT (CNOT)

Measurement of qubits

Properties of a digital quantum computer

- Contains qubits = quantum mechanical 2-level systems
- > Quantum gate operations act on qubits and change their states
- > Quantum state is transformed to classical information by measurements
 - > Choose a basis in which to measure (usually Pauli-Z)
 - Measurement outcomes are operator eigenvalues: +1,-1 for Pauli-Z
 - > Measurement outcome is probabilistic (Born rule)

 $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

Measurement probabilities

- $|\langle 00|\psi\rangle|^2 = |\langle 11|\psi\rangle|^2 = 1/2$
- $|\langle 10|\psi\rangle|^2 = |\langle 01|\psi\rangle|^2 = 0$

Quantum circuit (Bell pair)

Outcomes for different number of measurements

- > One of four bitstrings is measured each time
- > Probability given by quantum wavefunction
- Infer that by repeated measurements (build histogram of #(observed bitstrings)

Interference in quantum circuits

Corresponding light interferometer (Mach-Zehnder)

Interference of different circuit paths

- > Outcome depends on phase difference φ along two paths
 - > Qubit q0 in state |0> for $\varphi=0$,
 - > Qubit q0 in state |1> for $\varphi = \pi$

IOWA STATE UNIVERSITY

Quantum circuit (interference):

- Hadamard gate H acts as semi-transparent mirror
- Qubit q0 stores information about phase evolution of qubit q1
- > Qubit q1 acts as state dependent phase delay

Quantum versus classical computer

Most important differences between classical and quantum computer

- > QC can be in a superposition of bit states
- QC exhibits interference of different circuit paths, analogous to waves or light
- > QC exhibits entanglement and thus non-local effects
- > QC intrinsically probabilistic
- > QC more powerful for certain tasks:

factoring, searching, quantum simulation,...

www.scottaaronson.com/blog, smbc-comics.com

Figure by C. Addams (NYT)

How does a quantum computer look like?

Various implementation platforms are being built. Too early to tell which ones succeed.

DiVincenzo criteria for scalable quantum computer

- > Well-characterized qubits, scalability to large systems
- > Ability to initialize state & perform "universal" set of gate operations
- > Long lifetime of quantum state >> gate operation
- > Measurement capability with high fidelity

Superconducting qubits (Yale, UCSB, ETH, IBM, Google, Rigetti, Intel...)

Trapped ions (NIST, Innsbruck, IonQ, Honeywell, ...)

Photonic QC (Xanadu, PsiQ, QuiX, ...)

& others (neutral atoms, bosonic processors, ...)

500 nm Co Silicon spin qubits (Princeton, New South Wales, SQC, ...)

Implement quantum circuits and run using quantum cloud services

Different quantum programming frameworks are available

- > IBM Qiskit, Circ (Google), PyQuil (Rigetti), Q# (Microsoft): syntax similar to Python
- > Quantum Programming Studio (QPS): easy drag&drop circuits
- > Many open quantum software projects: Unitary Fund, Qiskit, OpenFermion, Circ, Quest, Yao, ...
- > Run quantum circuits using quantum simulators (incl. noise models) and/or on IBM hardware

	From Quantum Programming Studio	From IBM Quantum Experience	
	Simulate Show angles Show state vector	Qubit:	
	Classical registers	Frequency (GHz) V	ibmq_santiago
	Register Bin Hex Dec	Avg 4.767	Details
			5 Status: • Online Avg. CNOT Error: 2.460e-2
	c 1 1h 1	min / 62/ max / 833	Qubits Total pending jobs: 7 jobs Avg. Readout Error: 2.396e-2
0	Level state	mm 4.024 max 4.035	22 Processor type ①: Falcon r4L Avg. T1: 150.03 us
	Local state		QV Version: 1.4.1 Avg. T2: 150.38 us
State vector	Qubit Measured Probability of 1 θ °deg φ °deg Bloch	Connection:	Basis gates: CX, ID, RZ, SX, X Providers with 2 Providers
0 70710678+0 00000001110> 50 000008		CNOT orror	Your usage: 0 jobs
-0.70710678+0.00000001 10 50.0000000000000000000000000000000000	q0 🚺 1 180 0 🦙	CNOTEIR	Supports Qiskit Runtime: Yes
Export circuits to Circ, Qiskit, PyQuil,	q1 3 0.5 90 180	Avg 2.460e-2	0-0-0-0
		min 1 382e-2 max 3 495e-2	

What can you do with a quantum computer?

Quantum computers promise dramatic speedups over classical computers

for certain tasks. New computing paradigm!

Longer term applications

- > Factoring integers using Shor's algorithm: break public-key RSA encryption
- > Speed-up searches of unstructured databases using Grover's algorithm
- > Simulate quantum dynamics: protein folding, molecular dynamics, chemical reactions, ...

Peter Shor (from dotquantum.io)

IOWA STATE UNIVERSITY

Deutsch-Josza algorithm (example of exponential speedup):

Task: A black box U_f performs transformation $|x\rangle|y\rangle \rightarrow |x\rangle|y \oplus f(x)\rangle$ with $x \in \{0,1\}^n$ and $f(x) \in \{0,1\}$. It is promised that f(x) is either constant or

balanced (= 1 for half of all x and zero otherwise). Is f(x) constant or balanced?

Deutsch-Josza algorithm

Task: A black box U_f performs transformation $|x\rangle|y\rangle \rightarrow |x\rangle|y \oplus f(x)\rangle$ with $x \in \{0,1\}^n$ and $f(x) \in \{0,1\}$.

It is promised that f(x) is either constant or balanced (= 1 for half of all x and zero otherwise).

Determine whether f(x) is constant or balanced?

Simulating nature using quantum computers

- R. Feynman: "Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical."
- > Hilbert space dimension grows exponentially with the number of particles: $N = 2^n$
- > Example: $n = 1000 \rightarrow N = 2^n = 10^{300} \gg$ number of baryons in the universe 10^{80}
- > Cannot even store wavefunction, but QC can create it!

Idea: Prepare wavefunction on QC using gates and measure its properties

- > Find ground state energy of an interacting Hamiltonian H
- > Algorithm: Prepare non-interacting initial state and slowly turn on interactions

$$H(t) = H_0 + tH_{\text{int}}, 0 \le t \le 1$$

Richard Feynman

Noisy intermediate-scale quantum computing (NISQ) era

Important caveat: Current quantum computers are too noisy to allow for quantum error correction. Intermediate = 10 - 100s of qubits.

Without error correction, errors accumulate over time and the maximal gate depth is limited Near-term applications:

> Molecular snectra

> > Excited

Classical computer

Quantum computer

Sim, Alán Aspuru-Guzik et al., Physics Viewpoint (2018).

- Generate truly random numbers by sampling from a random wavefunction
- Hybrid quantum-classical algorithms using parametrized quantum circuits

Encode

- **Optimization problems**
- Optimize cost function

in variational state

Very general!

IOWA STATE UNIVERSITY

Kandala et al (IBM) (2017)

Ë -0.4 .6 € −0.6

Google's Sycamore QPU

Quantum advantage

Quantum Advantage: perform tasks (of practical relevance) with controlled quantum systems going beyond what can be currently achieved with classical digital computers.

- Soogle announced quantum advantage (or supremacy) in 2019: Performed calculation on "Sycamore" chip in 200 sec that Googles estimated would take 10'000 years on classical hardware
- > Led to classical algorithmic development that showed it can be done (potentially) much faster
- > Take-away: Google's calculation was important proof-of-principle (similar to Wright flyer)

published in 1908

<u>ຈ</u>ອງຈ

Most likely need quantum error correction for full quantum advantage!!! But let's do the research!

Quantum gold rush (before quantum winter?)

Progress in quantum technology has spurred large investments & a lot of industry activity.

https://www.indeed.com > q-Quantum-Computing-jobs

Quantum Computing jobs - Indeed

4342 Quantum Computing jobs available on Indeed.com. Apply to Software Engineer, Researcher, Scientist and more!

> Both hardware & software development

> Both large companies and startups

Quantum dynamics simulations

- I-Chi Chen, Benjamin Burdick, Yongxin Yao, PPO, Thomas Iadecola Error-Mitigated Simulation of Quantum Many-Body Scars on Quantum Computers with Pulse-Level Control arXiv:2203.08291 (2022).
- Noah F. Berthusen, Thaís V. Trevisan, Thomas Iadecola, PPO Quantum dynamics simulations beyond the coherence time on NISQ hardware by variational Trotter compression

arXiv:2112.12654 (2021).

 Yong-Xin Yao, Niladri Gomes, Feng Zhang, Thomas Iadecola, Cai-Zhuang Wang, Kai-Ming Ho, PPO Adaptive Variational Quantum Dynamics Simulations Phys. Rev. X Quantum 2, 030307 (2021).

Quantum dynamics simulations

- > Classically hard due to rapid growth of entanglement in nonequilibrium for generic H
- > Reason: contains highly excited states ➤ Volume-law entanglement entropy

Entanglement = complexity of classical calculation Exponential growth of classical resources like the bond dimension in tensor networks

Opportunity for quantum computing

Overview of quantum algorithms for dynamics simulations

> Lie-Suzuki-Trotter Product formulas (PF)

IOWA STATE UNIVERSITY

- > Simple yet limited to early times for current hardware noise
- > Trotter circuit depth scales as $\mathcal{O}(t^{1+1/k})$ is fixed t_{max}
- > Algorithms with best asymptotic scaling have significant overhead
 - > Linear combination of unitaries (TS) [1], quantum walk methods
 - [2], quantum signal processing (QSP) [3]
- > Hybrid quantum-classical variational methods [5, 6]
 - > Work with fixed gate depth I ideally tailored for NISQ hardware
 - > Trading gate depth for doing many QPU measurements

[1] Berry et al. (2015);
[2] Childs (2004);
[3] Low, Chuang (2017);
[4] Childs et al., PNAS (2018);
[5] Li, Benjamin, Endo, Yuan (2019);
Y. Yao, PPO, T. Iadecola *et al.* (2021).

$H = J \sum (Z_i Z_{i+1} + h_i Z_i)$ • PF (com 4) OPF (emp) • TS • OSP (seg) CNOT gate count 10 OSP (JA emp) 10^{8} 10^{2} From [4] 10 10 2030 50 70100 System size

principle [5, 6]

 $M_{\mu\nu}\theta_{\nu} = V_{\mu}.$

Overview of quantum algorithms for dynamics simulations

- > Lie-Suzuki-Trotter Product formulas (PF)
 - > Simple yet limited to early times for current hardware noise
 - > Trotter circuit depth scales as $\mathcal{O}(t^{1+1/k})$ is fixed t_{max}
- > Algorithms with best asymptotic scaling have significant overhead
 - > Linear combination of unitaries (TS) [1], quantum walk methods

[2], quantum signal processing (QSP) [3]

- > Hybrid quantum-classical variational methods [5]
 - > Work with fixed gate depth I ideally tailored for NISQ hardware
 - > Trading gate depth for doing many QPU measurements

[1] Berry et al. (2015); [2] Childs (2004); [3] Low, Chuang (2017); [4] Childs et al., PNAS (2018); [5] Li, Benjamin, Endo, Yuan (2019); Y. Yao, PPO, T. Iadecola *et al.* (2021); [6] Berthusen, Trevisan, Iadecola, PPO (2021).

IOWA STATE UNIVERSITY

- Variational MacLachlan approach
 - Combine simplicity of Trotter product with a variational approach to simulate for long times.

Demonstrate full algorithm on IBM hardware [6].

Trotter product formula simulations of quantum dynamics

Decompose Hamiltonian into sum of terms that include commuting operators $H = H_{even} + H_{odd}$ >

$$H_{\text{even}} = \frac{J}{4} \sum_{i \text{ even}} (X_i X_{i+1} + Y_i Y_{i+1} + Z_i Z_{i+1}) \text{ and } H_{\text{odd}} = \frac{J}{4} \sum_{i \text{ odd}} (X_i X_{i+1} + Y_i Y_{i+1} + Z_i Z_{i+1})$$

1st order Trotter product formula

$$\left[e^{-i(H_{\text{even}}+H_{\text{odd}})\frac{t}{N}}\right]^{N} = \prod_{\alpha=1}^{N} \left[e^{-iH_{\text{even}}\frac{t}{N}}e^{-iH_{\text{odd}}\frac{t}{N}} + \mathcal{O}(t^{2}/N^{2})\right]$$
Frotter step size

Trotter step size

 $\tau = t/N$

Must be chosen small \succ deep circuits Can be easily implemented as product of two-qubit unitaries

While product formulas are straightforward to implement, they result in deep circuits for long and precise simulations

Lloyd (1996)

NISQ Trotter simulations of mixed field Ising model

> Benchmark Trotter simulations on current NISQ hardware

Mixed-field Ising model:
$$H = \frac{V}{4} \sum_{i=1}^{L-1} Z_i Z_{i+1} + \frac{V}{2} \sum_{i=2}^{L-1} Z_i + \frac{V}{4} (Z_1 + Z_L) + \Omega \sum_{i=1}^{L} X_i$$

Displays many-body coherent dynamics for $V \gg \Omega$

Qubit2

t.J

Trotter simulation w/ statevector

Cnot gates

- ED

 $V = 2, \Omega = 0.48$

8

10

> Naïve Trotter simulation limited to $t \approx 1/J$ due to finite coherence time on device

One step of Trotter circuit in L=5 system, starting from Neel state.

Use pulse level control and error mitigation strategies to extend simulation time

Oubit1

t.I

Cnot gates

Trotter simulation w/ statevector

Trotter simulation on IBM Nairobi OPU

 $\langle Z_1 \rangle$

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

IOWA STATE UNIVERSITY

 $\langle Z_2 \rangle$

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

0

10

Bernien, Lukin (2017)

Pulse level control and error mitigation

- > Pulse level control allows to make optimal use of finite coherence time on device
 - > Direct implementation of R_{zz} gate via cross-resonance pulse > shortens program by about half
- > Error mitigation is key to extend final time of simulation
 - > Zero-noise extrapolation (Mitiq) + Pauli twirling: $G \mapsto GG^{\dagger}G$.
 - > Readout error mitigation (tensor product assumption):

 $C_{\text{ideal}} = M^{-1}C_{\text{noisy}}.$ $M = \begin{bmatrix} 1 - \epsilon_1 & \eta_1 \\ \epsilon_1 & 1 - \eta_1 \end{bmatrix} \otimes \cdots$

Symmetry-based postselection (tailored to specific model)

> Dynamical decoupling: apply $X(\pi)$ and $X(-\pi)$ during qubit idle time

Pauli twirling converts noise to stochastic form $\mathcal{N}_{\Lambda}\rho = \sum_{h} E_{h}\rho E_{h}^{\dagger}$ Kraus form

Qiskit Pulse

$$\bar{\mathcal{N}}_{\Lambda} p = \sum_{h} E_{h} p E_{h} \quad \text{Kraus id}$$

$$\int_{\bar{\mathcal{N}}_{\Lambda}} E_{h} = \sum_{a=0}^{3} \sum_{b=0}^{3} \alpha_{h;a,b}$$

$$\bar{\mathcal{N}}_{\Lambda} = F_{\Lambda}[1] + \sum_{(a,b) \neq (0,0)} \epsilon_{a,b} [\sigma_{c}^{a} \sigma_{t}^{b}],$$

IOWA STATE UNIVERSITY

 $\sigma_{c}^{a}\sigma_{t}^{b}$

Pulse level control and error mitigation

- Simulation of 12 gubits on IBM Guadelupe >
- Comparison of pulse gate versus standard CNOT realization of Rzz
- > Full error mitigation techniques for both

ZNE used linear extrapolation and scale factors {1, 1.5, 2}.

IOWA STATE UNIVERSITY

Pulse and zero-noise extrapolation (ZNE) are effective strategies to reduce errors.

(c)

800

600 500

Results for 12 qubits on IBM Guadelupe

FIG. 11. Complete list of error-mitigated local magnetization results $\langle Z_i \rangle$ versus time Vt for a 12-site chain measured on **ibmq_guadalupe** using the scaled- R_{ZX} and two-CNOT implementations (blue and red, respectively). The ideal Trotter simulation data (black) are also shown for reference.

Custom pulse gate for R_{zz} shows advantage proportional to shortening of pulse sequence **Trotter simulations limited to early times**

 $V=2, \Omega=0.48$

- Simulation of 12 qubits on IBM Guadelupe
- Comparison of pulse gate versus standard
 CNOT realization of Rzz
- > Full error mitigation techniques for both
- > Qubits have different quality
 - Compare i=1,2 with i=6 for example
 - > Gate noise
 - > Decoherence times

Quantum dynamics simulations

- I-Chi Chen, Benjamin Burdick, Yongxin Yao, PPO, Thomas Iadecola Error-Mitigated Simulation of Quantum Many-Body Scars on Quantum Computers with Pulse-Level Control arXiv:2203.08291 (2022).
- Noah F. Berthusen, Thaís V. Trevisan, Thomas Iadecola, PPO Quantum dynamics simulations beyond the coherence time on NISQ hardware by variational Trotter compression

arXiv:2112.12654 (2021).

 Yong-Xin Yao, Niladri Gomes, Feng Zhang, Thomas Iadecola, Cai-Zhuang Wang, Kai-Ming Ho, PPO Adaptive Variational Quantum Dynamics Simulations Phys. Rev. X Quantum 2, 030307 (2021).

Time-dependent variational quantum algorithms

Adaptive Variational Quantum Dynamics simulation algorithm

- > Adaptive ansatz construction in pseudo-Trotter form: flexible and avoids pitfalls of fixed ansatz
- > Add operator from predefined pool to ansatz if MacLachlan distance increases above set threshold
- Operator pool we use contains all Pauli strings that appear in Hamiltonian [1] Y. Yao et al., PRX Quantum 2, 030307 (2021)

Application I: continuous quench in integrable spin chain

- > Linear quench of anisotropic XY chain in transverse magnetic field $\hat{\mathcal{H}} = -J \sum_{i=0}^{N-2} \left[(1+\gamma) \hat{X}_i \hat{X}_{i+1} + (1-\gamma) \hat{Y}_i \hat{Y}_{i+1} \right] + h_z \sum_{i=0}^{N-1} \hat{Z}_i \text{ with } \gamma(t) = 1 - \frac{2t}{T}$
- > AVQDS follows exact solution during and after quench, shown for N = 8
- > Circuit depth saturates at 100 CNOTs << Trotter circuit depth 10^4 CNOTs
- > Can simulate system with gate depth independent of time t recan simulate to arbitrary times!

IOWA STATE UNIVERSITY

(-0.7,1)

РМ

(-2, 0)

(1.6, 1)

PM

(2,0)

FMr

FM₂,

Application II: sudden quench in nonintegrable spin chain

- > Circuit depth two orders of magnitude smaller than Trotter circuit depth
- Saturated AVQDS circuit depth scales exponentially with system size N

Quantum dynamics simulations

- I-Chi Chen, Benjamin Burdick, Yongxin Yao, PPO, Thomas Iadecola Error-Mitigated Simulation of Quantum Many-Body Scars on Quantum Computers with Pulse-Level Control arXiv:2203.08291 (2022).
- Noah F. Berthusen, Thaís V. Trevisan, Thomas Iadecola, PPO Quantum dynamics simulations beyond the coherence time on NISQ hardware by variational Trotter compression

arXiv:2112.12654 (2021).

 Yong-Xin Yao, Niladri Gomes, Feng Zhang, Thomas Iadecola, Cai-Zhuang Wang, Kai-Ming Ho, PPO Adaptive Variational Quantum Dynamics Simulations Phys. Rev. X Quantum 2, 030307 (2021).

Variational Trotter Compression (VTC) algorithm

Key idea of VTC algorithm [1, 2]:

- > First, propagate state using Trotter: $|\psi(\boldsymbol{\vartheta}_t)\rangle \Longrightarrow U_{\mathrm{trot}}(\tau) |\psi(\boldsymbol{\vartheta}_t)\rangle$
- > Then, update variational parameters $\vartheta_t \rightarrow \vartheta_{t+\tau}$ by optimizing fidelity cost function

idelity cost function
$$egin{array}{c} \mathcal{C}=|ig\langle\psi_0|U^\dagger(m{artheta}_{t+ au})U_{ ext{trot}}(au)U(m{artheta}_t)|\psi_0
angle|^2$$

Our variational state:

F

$$|\psi(\boldsymbol{\vartheta})\rangle = U(\boldsymbol{\vartheta}) |\psi_0\rangle = \prod_{l=1}^{\ell} \prod_{i=1}^{N} e^{-i\vartheta_{l,i}A_i} |\psi_0\rangle$$

 ℓ = number of layers N = number of parameters per layer A_i = Hermitian operator (e.g. Pauli matrix)

Return probability to initial state is maximal for optimal parameters $\vartheta_{t+\tau}$

Measure cost function on QPU [3]

[1] Lin, Green, Smith, Pollmann (2020); [2] Barison, Carleo (2021),[3] Berthusen, Trevisan, Iadecola, PPO (2021).

Application to Heisenberg model: choice of ansatz

1D AF Heisenberg model
$$H_0 = rac{J}{4}\sum_{i=1}^M \left(X_iX_{i+1} + Y_iY_{i+1} + Z_iZ_{i+1}
ight)$$

> Start from classical Néel state and time-evolve with ${\it H_0}$: $\ket{\psi(t)}=e^{-iH_0t}\ket{010101\cdots}$

Brickwall form of quantum circuit

> Determine depth of layered ansatz $\ell \equiv \ell^*$ to accurately describe $|\psi(t)
angle$

Required layer numbers versus time

- > Start from classical Néel state and time-evolve with $H_0:|\psi(t)
 angle=e^{-iH_0t}|010101\cdots
 angle$
- > Determine depth of layered ansatz $m\ell$ to accurately describe $|\psi(t)
 angle$

Required layer number ℓ to achieve $1 - \mathcal{F} < 10^{-4}$ grows linearly with time and then saturates.

VTC benchmark on statevector simulator

> VTC approximately follows Trotter with fixed

small step size $\Delta t = \frac{0.2}{J}$

- > Orange curve has depth n = 700 at t_f
- Solution Grey curve has depth $3\ell = 228$ at all t

> VTC cost function has fixed depth $3\ell = 228$

> Gradient based optimization using L-BFGS-B

VTC allows simulating to arbitrarily long times with high fidelity.

VTC on ideal circuit simulators

- > Double-time contour cost function circuit
- > Non-gradient-based optimizer: CMA-ES
- > Larger shot numbers increase fidelity
- > Single compression step takes few hours

VTC is feasible for noisy cost function.

VTC on IBM hardware

Explicit demonstration of dynamics simulations beyond QPU coherence time

- > Cost function evaluation on IBM hardware ibmq_santiago & ibmq_quito
- Final fidelity = 0.96, where Trotter fidelity
 has decayed to < 0.4 already
- > 15 compression steps
- > Average fidelity $\langle F \rangle = 0.86$
- > $\mathcal{M} = 5700$ measurement circuits in total
- > Comparable number of measurements for MacLachlan simulations $\approx 10^4$

Summary

- > Trotter dynamics simulations with pulse-level control
 - > Straightforward to implement even for large systems
 - > Error mitigation and pulse-level control boost performance
- > Adaptive variational quantum dynamics simulation (AVQDS) framework
 - > Orders of magnitude shallower circuits than Trotter simulations
- > Explicit demonstration of dynamics simulation beyond QPU coherence time
 - > Variational Trotter Compression on IBM hardware for M = 3 sites
 - Can simulate out to arbitrary long times with high fidelity

References:

• I.-C. Chen et al., arXiv:2203.08291 (2022)

IOWA STATE UNIVERSITY

- Y. Yao et al., PRX Quantum 2, 030307 (2021)
- N. Berthusen et al. arXiv:2112.12654 (2021)

Thank you for your attention!

38