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Outline and Take-Home Messages

* Quantum Computing Applications to Condensed Matter Physics
— Condensed Matter & Material Science provides a rich & relevant set of problems

2

« Difficulty level is often tunable

* Many classical computational approaches are known to compare to
* Open question which problems are best suited to demonstrate quantum advantage

— Hybrid quantum-classical simulations leverage both classical & quantum computing power
* One example is the variational quantum eigensolver (VQE) (see tutorial yesterday)
— Simulations of nonequilibrium dynamics are classically hard due to entanglement growth

» Opportunity for quantum computing
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Outline and Take-Home Messages

* Quantum Computing Applications to Condensed Matter Physics
— Condensed Matter & Material Science provides a rich & relevant set of problems
« Difficulty level is often tunable
* Many classical computational approaches are known to compare to
* Open question which problems are best suited to demonstrate quantum advantage

— Hybrid quantum-classical simulations leverage both classical & quantum computing power
* One example is the variational quantum eigensolver (VQE) (see tutorial yesterday)

— Simulations of nonequilibrium dynamics are classically hard due to entanglement growth
» Opportunity for quantum computing

* Quantum Error Correction (QEC)

— Primary goal of the field that is required to unlock the full potential of quantum computing

— Main idea: Protect quantum memory from noise and perform fault-tolerant operations

— Many flavors and QEC codes exist (e.g. QEC Zoo'): Here focus on the basic principles.

[1] www.quantumerrorcorrectionzoo.org
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Quantum Error Correction: Basics
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Motivation and repetition codes

« Errors in a quantum computation are unavoidable due to
— Contact with environment > leads to decoherence
— Unitary gate set is continuous > gate errors can be arbitrarily small U = Ujgea1[1 + O(€)]

* Quantum Error Correction (QEC) protects quantum information by adding
redundant information

— Same idea as in Classical Error Correction

Code distance
d = min Dpg(z,y)

z,yeC
encoding noise - decoding N Errors of weight up to a1
X Yy Y T 2
can be corrected
0 (OOO) e C (001) Qf C 0
1 (111 e’ (011)¢ C 1 Singe bit flips can be corrected
0 (000) (011) 1 Two bit flips result in logical

error
Failure probability: 3p2(1 —p) —|—p2 <p=p<1/2
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Challenges for QEC

» Phase errors occur in addition to bit flip errors

0) — [0) 1 1 B Phase flips act as bit
1) — —|1) +) = ﬁ”m + 1) = ﬁ“m —Dl=1-) flips of X eigenstates!

« Errors can be arbitrarily small and are continuous

« Measurement necessarily causes disturbance
— Projective measurement projects onto eigenspace of measurement operator

* No cloning theorem (cannot copy quantum information)

e L Encoding circuit:
3-qubit bit flip code

_ ) = al0) +b[1) ) Protected against
[0) = 10) = 1000) | gical operators | a0y + 01 {X1, X2, X3}

B 10)
’1> N ‘i> _ |111> XL = X1X2X3 errors.

AR AVAYA |0) ———
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Bit flip code: error detection via syndrome measurement

 Measure Pauli strings (Z122, Z1Z3) w yields error syndrome (%1, =+1)

‘07 ﬂﬂ_l Eﬁa W24y | ZrZ5 | Error type Action by majority
.&r +1 gl no error no action vote
N EEmEsa +1 —1 | bit 3 flipped | flip bit 3
|2 > 9 | il | bl et | Hobiel
—1 —1 | bit 2 flipped | flip bit 2

- 1 - 1 _ _
016) = —=(10) +1)19) = —=(10}19) + Z1 22 1)14) )

= 3 (10 + 111 + 212:00) ~ [0]9)) = 5 (14 202 0) ) + 5 (1~ Z122) 1)

Measurement of ancilla collapses logical qubit to /= 2122 orthogonal eigenspaces
2

Digitization of error: bit flip either occurs (with small probability) or not.
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Orthogonal error subspaces

X2
» Ancilla measurement discretizes error by projecting states onto orthogonal and
undeformed error subspaces

» Recovery operation associated with each syndrome outcome (+1, +1)
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Two and three bit flip errors are not correctable
X4

« Two-bit flip errors is erroneously corrected = logical error
» Three-bit flip error correspond to logical operation and cannot be detected
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Challenges for QEC: almost all addressed in bit flip code

» Phase errors occur in addition to bit flip errors X (still need to be addressed)

0) — [0) 1 1 B Phase flips act as bit
1) — —|1) +) = ﬁ”m + 1) = ﬁ“m —Dl=1-) flips of X eigenstates!

« Errors can be arbitrarily small and are continuous
— Ancilla measurement discretizes errors (either they occur or not)
« Measurement necessarily causes disturbance
— Projective measurement projects onto eigenspace of measurement operator

— Measurement of syndrome operators does not affect information encoded in code
subspace C

— Projection is actually a good thing
* No cloning theorem (cannot copy quantum information)
— We never copied the state |¢) = a|0) + b|1)

. - . ; Q A2 C SUPERCONDUCTING QUANTUM
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Phase flip code

« Phase errors occur in addition to bit flip errors

0) — |0) 1
1) — —[1) ARG

3-qubit phase flip code

Phase flips act as bit

10) + 1) = \/§HO> — Dl =1=) flips of X eigenstates!

_ 1 .
0) = |0) = | +4++) = 7(‘0> 4 |1))®3  Protected against { Z1, Za, Zo } errors.
~ 1 93  Syndrome measurements
1) =) =]———) = 7(\0> 1)) (X1 X2, X1 X3) = (41, 1)
E|Z>coding circ%_ 107 ﬁ@ﬂa
0) —e—{H}- - a|0) + b|1) W;{ wL\J Circuit to measure
|0) o—{H |- . X1
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Combine bit and phase flip code: Shor’s 9-qubit code

« Shor’s 9-qubit code protects against all single 1) H .
bit and phase flip errors and their combination - r
« Codewords 0) &
|0} s>
|0) — |0) = 23T(\OOO) + [111))(]000) 4 [111))(|000) + |111)) 0) 4 H
1) = |1) = 5372 1000) — [111))(]000) — [111))(|000) — [111)) 0) l_‘
» Detect bit flips by syndrome measurements of |0) -
(2123, Z1Z3, ZsZis, ZyZg, Zi Zg, Ly Zy) 10) & 77
« Detect phase flips by syndrome measurements
(X1 X X3X3 X5 X, X4 X5 X6X7X3Xy) 0) &
 Information encoded nonlocally |0} —
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Code distance and uncorrectable errors

« Two bit flips in a single cluster of three qubits cannot be corrected (instead we
incorrectly apply Xs)

X3X1X5]0) = |0)

_ _ Z1(al0) + b|1) = al0) — b1 results in a logical phase flip
XXl - [T (al0) +b[1) = af0) — H|T)

« Two phase flips in different clusters cannot be corrected

Z77174]0) = [1) _ _ _ _
_ _ X7 (al0) +bl1) = a|l) +b|0 results in a logical bit flip
22,2411 — [0 (al0) +b[1) = alT) + b[0)

* Only weight t=1 Pauli errors can be corrected = Code distance d = 2t + 1 = 3

Are there two qubit errors
that can be corrected?

« Shor’s code is a [[n, k, d]] = [[9, 1, 3]] code.
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Error probability

« Unencoded qubit: failure with probability p
« Shor’s logical qubit
— Logical phase error requires two bits on the same cluster to flip

* Upper bounded by 3\ /2 \2 5
pL,phaseS3 9 (§p) :4p

— Logical bit flip error requires two bits on different clusters to undergo phase error
* Upper bounded by 3 2 \ 2
PLbit < (2) 32(§p) = 12p°

— Encoding is advantageous for
PL.tot = 16p* < p* = p < 1/16

« Encoded qubit has smaller failure rate for small enough physical failure rate
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Conditions for Quantum Error Correction

- Define set of correctable errors £ C P, = {I,X,Y, Z}®"
— Typical example: all Pauli errors of weight < t
« Starting from any state 3} € C', wish to undo any action composed of errors in £

Error map (Stinespring  [3){0) 5z — Z M, || g Error ent.angles system
dilation representation): P with environment!

orthonormal states
Kraus operators M,, = Z Cuals
a

« Can reverse errors if there exists a recovery superoperator defined via { R, } such

that .
~ ~ * Entanglement has been shifted to
M, VYA = |7)|stuff
Z Ry Mu|i) |y elv)a = 12)] )BA occur between environment & ancillas
o « State |stuff>g, must not depend on i

R, M,, acts as identity on codespace C

RVMM|E> = )‘vum
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Conditions for Quantum Error Correction

» Using completeness conditionz R}:R,, = I, we find

MIM,|i)y = M]( ZR R,) ZA(;)\W]
Also acts as |dent|ty on
codespace C RuMum _ )‘vum

* Necessary and sufficient condition on codespace C for allowing errors in £ to be

corrected is _ _
(GIMIM,[3) = Cs.04 Since M, Z%
' this implies

<]|Pbpaﬁ> = C’ba(SZ-j for P,, P, € £
Arbitrary Hermitian matrix that
is independent of i,j
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Alternative derivation of QEC condition

» Consider the code block is in any state I@ and then an error acts:

BI0) e = S Myl )

« The reduced density matrix of the environment must not carry any information
about the state |¢)

o =S W) p(PIM] M) 5
w,v

Must be independent of |1) = Z c;ilt)

pE =Y > creilm)p(i|MIM,|j) (v

1,J MV

Independence from c¢;implies that (E|MJMM\§> = (0 - Used thatz lci|? =1,
i
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Example: Shor’s code and one weight Pauli errors

|0) — |0) = 23W(|OOO> + |111))(]000) + [111))(]000) + |111))
1) = [T) = 5375(1000) — [111))(1000) — [111))(]000) — [111))

<5|Pbpaﬁ> — Cbadij for Py, Py € £

(0] X0 X5|0) = G

e Same holds for Y, operators

(1] X0 X3|0) = 0  But, if one of the Paulis is X2*X3 o
1 1) = _ _ o longer
HXa X010 = 0 (0] X1 X2 X5]0) =1 independent of i,j.
(0| Z,Z3]|0) = 44 (11 X1 X5 X3]0) =0 Thus, X2*X3 cannot
_ _ = - be corrected.
(1|1Z4Zp|0) =0 (11 X1 X2 X35|1) = -1

(1| ZaZ|T) = Sap
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Shor’s code as stabilizer code

- Pauligroup P, = {£1,+i} x {I, X,Y, Z}*"

« Stabilizer code subspace is defined by a (stabilizer) subgroup & C P,, as the vector
subspace that is fixed by all the elements in S C P,

C — {|¢> c H{SW) _ |¢> VS € 8} Joint +1 eigenspace of set of

commuting Pauli strings

— Stabilizer group must not contain (-1) and it is Abelian
— Sufficient to define the codespace via the generators of the stabilizer group only

» For 3-qubit bit flip code: S = (Z,Z,, Z,Z3)

« For Shor’s 9-aubit code:
{2125, 2275, 2475, Z5Z¢, 27728, Z8Z9, X1X2X3X4X5Xs, Xs4X5X6X7XsXo}.

« Set of logical Pauli gates = set of Pauli operators that commute with all stabilizers =
centralizer of § C P, Alternatively: Z = X1 X0 X3 X = Z1Z47~
— Example: Z = X1 X0 X3 Xu X5 X6 X7 XX and X = 2129752475726 27257y
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Surface code

(@)

O @ =<0 <@ <0 <@ <0

(c) @

®x0x®

@
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@ *——repeat——

@ -9t H

@

® ! +1:|Pxp
© D - L%y
©) D

*——repeat —

Planar version of Kitaev’s toric code
H=-Y 4, Y5,

v p
A, =]]X:, B.=]]%

1€V 1ED
Data qubits (open circles) on bonds of
square lattice

Local Z and X stabilizers

— Z checks are product of four Z’s around
plaquette

— X checks are product of four X’s along star

GS space is stabilizer space

Kitaev (1997); Dennis et al. (2002); Fowler et al. (2012);
Cleland, Sci. Post Lecture Notes (2022)
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Logical qubit in surface code

41 qubits = 2 x 41 degrees of freedom

20 Z and 20 X checks =2 x 40
constraints
2 unconstrained degrees of freedom left
=1 qubit
State [) = [u)y ® [v) . £ 920

' dimensional space. Fixed

_ _ to be a unique state by
Logical qubit stabilizer measurements.

Logical operators
— X, bit flips five qubits, Z, phase flips five
Y qubits ((change state of array)

— X, connects X boundaries, Z, connects Z
boundaries. Here, code distance d = 5.

>

0O <x@ <O

X

L d=5

N><>.>‘
OX@X O XEAOX@*x O X@x0

O <x@ <0 x4
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Fault-tolerant guantum computations

« Compute directly on encoded logical qubits (no decoding necessary)
« Must prevent propagation and accumulation of errors
« Example: logical CNOT for 3-qubit bit flip code

logical G |
qubit 1
s>
logical ok
qubit 2 N
T\
L/

Implementation A

Assume that the only sources of errors are individual controlled-not gates

logical * .
qubit 1 o
b
logical A
qubit 2 b
D
\L/

Implementation B

Further reading:

Nielsen, Chuang, Ch. 10.6
Cleland, Sci. Post Lecture
notes on fault-tolerant
gate implementation in
surface code

which produce bit-flip errors in their outputs. Which of the two implementations is fault-tolerant?

22  Peter P. Orth | Quantum Error Correction and Applications in Condensed Matter Physics, USQIS School
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Summary of Quantum Error Correction part

Quantum Error Correction protects quantum memory from a chosen set of
correctable errors

— Typically chosen as Pauli errors below some weight
Quantum information is encoded nonlocally (locality assumption of the errors)
Failure probability reduced for sufficient small failure rate of physical qubits

Different codes exist [[n, k, d]], specified by n = number of physical qubits per block,
k = number of logical qubits per block, d = distance determines the maximal weight
of errors that can be corrected: d =2t + 1

Examples discussed: bit-flip, phase-flip, Shor code, surface code

Outlook: Check out:

. - . * arthurpesah.me/blo
— Classical codes, CSS codes, stabilizer codes, Qudit codes, . | Roff:, arXiV:1907_f1157

— Bosonic codes for continuous variable systems * Nielsen, Chuang, Ch. 10
. ) ) * Preskill, Lecture Notes, Ch.6
— Fault-tolerant implementation of universal gate set * Rieffel, Polak “Introduction to QC” book
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Quantum Computing Applications in Condensed Matter Physics
Focus on near-term applications in pre-fault-tolerant era



Condensed Matter Physics & Materials Science

» Fueled by the many possibilities to combine atoms into (periodic) structures

‘ Materials Explorer
App by Materials Project

Search for materials by Y , OF property,

S T v e m kM ..
W T W R 0x W Pt A @@@.

RALAAE A
E

ta Co Pr Nd Pm Sn Eu Gd To Dy Ho E Tm Yo Lu

Ac Th Pa U Np Pu

Reset All 154,718 materials

« Goal: Understand & predict quantum materials’ properties
— Equilibrium behavior: phase diagrams, response functions at T=0 and T>0

Unconventional
superconductors

+ emergence
due to
electronic
correlations

— Nonequilibrium behavior: driven systems, quenches, metastable states, kinetic pathways
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Common theoretical approach: separation of scales

« Workflow of building realistic effective models for solids
— Start with atomistic description (theory of everything)

B = Te‘f‘v:ee‘l‘ﬂ‘|‘V;z"|“/ei+Hso+thper—|_Hrel_I_Hecct

T | e? o .
7.+ V.. = — Z N s = Z — * 50: spin-orbit coupling
F 2Mme i i |7°j — Tk| * hyper: hyperfine coupling
Gk e rel: relativistic corrections
1 ZJZK62 » ext: external fields
Tz‘ E V;z — QMJ + 5 Z ‘RJ o RK| Neglect of simplicity on
J#K following slides, but can be
ZJ6 quite important, e.g. in
Voo = — Z : topological materials
: |7"j = RJ‘

26  Peter P. Orth | Quantum Error Correction and Applications in Condensed Matter Physics, USQIS School
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Common theoretical approach: separation of scales

« Workflow of building realistic effective models for solids

— Start with atomistic description (theory of everything) > Born-Oppenheimer approximation
> treat Coulomb interactions approximately, e.g. within Density Functional Theory (DFT)

T, + Vee + T; + Vig + Vo)) @(r, R) = E*" - &(r,R)

O(r,R) = U, (r; R)xnp(R)

E°(R) E°(R) 4

ot
E.°(R £ V(R)+E,8(R)

E tot 2
/ \ E/1tof n2 o 3 -
. n . o € e o .

E,°(R) R E”O’H [ <5 Vet En(R)]an(R) = Enp an(R)

R

[Te - o ‘/ee + ‘/ez] \Ijn<r, R) = ETC; (R) . \Ifn(r, R) :d Matter Physics, USQIS School *A&SQMSAM SUPERCONDUCTING QUANTUM

MATERIALS & SYSTEMS CENTER




Downfolding to most important electronic orbitals

« Workflow of building realistic effective models for solids

— Start with atomistic description (theory of everything) > Born-Oppenheimer approximation
> treat Coulomb interactions approximately, e.g. within Density Functional Theory (DFT)

— Downfold to low-energy states near Fermi surface (e.g. derive electronic Wannier
wavefunctions) and build an effective (Hubbard-like) model

— Effective model treats Coulomb interactions more accurately

Example for illustration: NdNiO2, taken from Been et al, PRX (2021).

L ST B P W= i © o @ o @ Multiorbital Hubbard model
SEf o ° o o H ZE n +€ n _*_Uzn n
- kMo T Ek Mg it ,¢
5 g = *O)0R30e
> ———
g-4§<—'\¥ _/& lb\ o ° o ° V .' d H
&, \yn ll: o %¥s @ +Z wiCr ,dis + H.),
N7 e shi T
-8 \ ; ¥y |

-

: : + } ;. Wannier d,, ., function
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Effective multiorbital Hubbard-Hund models & spin models

« Workflow of building realistic effective models for solids

— Start with atomistic description (theory of everything) > Born-Oppenheimer approximation
> treat Coulomb interactions approximately, e.g. within Density Functional Theory (DFT)

— Downfold to low-energy states near Fermi surface (e.g. derive electronic Wannier
wavefunctions) and build an effective (Hubbard-like) model

— Effective model treats Coulomb interactions more accurately
— Apply further approximations to the model, e.g. derive spin model in strong interaction limit
— Compute phase diagram and response functions of effective model

Single-band Hubbard model Multiorbital Hubbard model - “ & >
(@) U X
_‘ N - Strong coupling $
2 obtain spin models P

H:ZJijSi'Sj—F.
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Numerical approaches to effective models

Solve a small instance of the effective model
— Exact Diagonalization, Quantum Monte Carlo, Matrix Product States, Tensor Networks, QC

— Extrapolate to larger systems The Lanczos method

If we need only the ground state and a small number of excitations
* can use “Krylov space” methods, which work for much larger matrices

Example: Exact diagonalization of * basis states with 107 states or more can be easily handled (30-40 spins)

Spln-l/ 2 models. Limited to N < 40. The Krylov space and “projecting out” the ground state

0}y = | L, lydseersd) (=0...000) Start with an arbitrary state )

‘1> | L l> (_ 0 001) « it has an expansion in eigenstates of H; act with a high power A of H
— i = s E A

2)=111,L...,1) (=0...010) HA\\I'>=ZC,1EA!n> E} <c0|0>+c1 (H) |1>+...)

3)=1111-.--,1) (=0...011)

For large A, if the state with largest |Enl dominates the sum
' ) * one may have to subtract a constant, H-C, to ensure ground state
H; g — <Z | H | j) * even better to use linear combination of states generated for different A

[a) = Zwa JH™¥), a=0,...,A

m=0

« diagonalize H in this basis From Sandvik, Lecture Notes (2009)
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Numerical approaches to effective models

« Embedding Methods

— Map lattice problem onto impurity model (= small part of the system) coupled to a reservoir
(= the rest of the system)

— Solve self-consistently using ED, QMC, etc to treat the interacting impurity model
— Becomes exact as the size of the impurity cluster increases

Pt o il Loy i)

(@  eace /(b Y " <
/ (b) }\] () %

U D o L 2
: DX | 2
| i Ik__/ (© | Parity mapping with Z, symmetry

(b)

\

\ CPU [Rl' Al] QPU / I'm—-llf,(r./'.’)l I’M ”/'-’)I"Inu(*ﬂ/'-’)

From Yao, ..., PPO, PRR (2021).
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Opportunities for Quantum Computing

« QC avoids memory bottleneck of classical methods
— Exponential growth of Hilbert space with system size limits classical methods such as ED

— Instead: quantum computer can handle exponentially many wavefunction amplitudes
(“Nature is not classical”, Feynman)
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Opportunities for Quantum Computing

« QC avoids memory bottleneck of classical methods
— Exponential growth of Hilbert space with system size limits classical methods such as ED

— Instead: quantum computer can handle exponentially many wavefunction amplitudes
(“Nature is not classical”, Feynman)

« QC can deal with highly entangled states
— Matrix Product States and Tensor Networks are efficient ways to compress a wavefunction

— The memory requirement is set by the bond dimension that grows as e®, where S is the
entanglement entropy after tracing out part of the system

— Essentially exact if the wavefunction carries a limited amount of entanglement: constant or
logarithmically growing S with system size

— Breaks down if S grows with system size (volume law)
— Ground states are often area law entangled (1D gapped states)
— Excited states generically carry volume law entanglement

* Relevant at T>0 & in nonequilibrium
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Algorithms for Ground State Preparation
« Variational quantum eigensolver (VQE)
« Other notable directions (not covered here)
« Quantum imaginary time evolution
* Motta et al., Nature Physics (2020); Ardle et al., (2019)
« (@Gomes et al., Adv. Qu. Tech. (2021)
» Subspace expansion techniques
 McClean et al., (2017)
« Bharti et al., Review of Modern Physics (2022).



Variational Quantum Eigensolver

Inpest (a) Objective function Output Sl ) Example from tutorial
0" <
6 — 0y — { 0 (6, {(H)u(0)}) )ﬁ B 55 16 - yesterday
: grd distance ) (Kagome_gs.ipynb):
5 | 3
r A\ / v A
( 0 ¥ 2
|0> (Rz (el,l)HRm ( 3 1 6
0) (1) NG (4
2 1 3
03 1
10)
11
) OL min0 (6. {(Mvw}) <
L (d) Classical optimization Quantum-classical loop
Early work: Peruzzo et al., (2013) From Bharti et al., RMP (2022)
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VQE for Kitaev square-octagon lattice model in magnetic field

(b) Aspen-9 Rigetti QPU
4 3 14 15

(a) Square-octagon lattice

(d) 8 qubits with open
boundary condition

(c) 4 qubits with open
boundary condition

Kitaev model on square-octagon lattice matches Rigetti's QPU geometry. No
SWAP gates needed as connectivities match.

From:

Li et al. (SQMS), PRR (2023).
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0 - TC, GL~\\ TCqy . >
0 1/V2 1 Ji/J,

(e

FIG. 2. Phase Diagram. Schematic phase diagram of the
Kitaev model (2.2) on the square-octagon lattice as a func-
tion of spin exchange anisotropy J, /J. with J, = J. = J,
and magnetic field in [111] direction hf11y). It includes gapped
toric code phases (TC:, TCs,) that are stable with respect
to small fields, the gapless line (GL) at J, /J. = 1/v/2 and
a phase with non-Abelian (nA) Majorana excitations that
emerges in field above the gapless line. At large magnetic
fields the system enters a spin-polarized paramagnetic phase.
The red circles denote the different, representative model pa-
rameter points that are studied in our benchmark simulations.
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Parametrized quantum circuit (HVA ansatz)

lg7) —| !i‘-\'('lr'\)} :1J| RY (2) [l ; II RZ(29)
| ]
|g6) RX(2a) i Im'(z,?) ll 5 II RZ(27)
| |
[gs) —| ["-\'(2(')} i [ RY (273) l[ i I RZ(2%)
] ]
[ga) RX(24a) : II RY (23) ll : II RZ(27) I
| |
las) —| RX(28) & i rves) Hrx@/2)} [RX(-7/2) : RZ(27) | [Rz(27)} &
| )
la2) — RX (26) RZ(20) 9—.-,:—| RY (26) |- RX(x/2)] [RX (=/2) ' RZ(27) |—— [RZ(2)] ®
la) — RX(26) 1 @-ﬂm'(z}) H RX(7/2)] & rz(23) ll & {RX(=/2) i RZ(23) & [Rz(27) &
la0) RY (23) | RX (%/2) |4 p— RX(-7/2) ]~I-| RZ(27) | & rz(27) |-
1

FIG. 3. HVA with one layer on eight qubits.

The Hamiltonian Variational Ansatz (HVA) with one layer on eight

qubits, split into commuting blocks. The first block corresponds to the operation e~ ‘¥ 2q Xa ¢~ 26,5y € X-links XiX; , the second

to e~ B TqYa g—iBX(s,5)cy-links YiYj  and the third to e 7 XaZa ¢~ X(ij)ez-links ZiZj

X-links = {(qo, 1), (92,93)}, Y-links = {(qo, ¢3), (¢1,92)}, and Z-links = {(qo, g4), (q1,95), (2, g6), (g3, 97)}.
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Statevector and QASM simulations

Number of cost function evaluations

Conclusions

(b) 16 qubits Error distribution f
100 of the optimized i
solutions ~
107! f-————/I
1075 250 500
Optimization trajectory
0 20000 40000 60000 80000

e Shot noise makes optimization more

challenging

 Start from preoptimized solutions for

larger systems

* Subspace expansion techniques avoid
classical optimization loop (still require

many measurements)
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Energy with shot noise
o

—— BOBYQA-noisy _
0 —— CMA-ES
----- Ground state

2

(noiseless)

Optimized energy
Distribution

0 250 500
Optimization trajectory

0 10000 20000 30000 40000 50000

Number of cost function evaluations

Noiseless: 16 qubits
Noisy: 8 qubits
(8000 shots)

From:
Li et al. (SQMS),
PRR (2023).

Optimizer Error (noiseless) | Measured deviation|Cost function evaluations
BFGS, 501 initial values 0.45069 0.42052 mean: 747, max: 1994
BOBYQA, 501 initial values 0.27485 0.21843 mean: 471, max: 610
BOBYQA-noisy, 501 initial values 0.07989 -0.00453 mean: 3532, max: 4004
CMA-ES 0.02416 -0.06462 37570
CMA-ES, 80 initial values 0.01610 -0.07125 mean: 21042, max: 52000
Dual annealing 0.04534 -0.01631 60101
SPSA 0.00612 0.00879 100000 (cutoff)

S@M S
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Variational quantum eigensolver for excited states

 Variational quantum eigensolver to prepare highly excited states (VQE-X)
* Minimize energy variance (instead of energy):

C(1¥(6)) = (Y (O)H?[(0)) — (Y (0)|H v (0))°

h: =0.5, Pmin hy =0.5, Pmax N .
12 a) T0) 100 Adaptive ansatz
8 _ & — 0 75 construction instead of
N === = i 50 fixed ansatz
0 4 el ..
i = | 25 ¢ Nontrivial pool
—8 1 ) 1 1 1 1 1 1 1 0 dependence
0 50 100 150 200 O 200 400 600 >
Trial Trial

Full coverage of energy spectrum
for operator pool with long-

range Pauli strings

Proax = (VYL UIBZ) ) U (6XG1 )

Can investigate properties of
volume law highly excited states

N.
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10 A —
{1 + VQEX
5 ey
Bt —— u "ay
1 -y 1 l,‘
0 ssmm—— -
B~ = ':
B I s —  J
_5 - —mmmmr—y - L)
I (a) d
1 I .I Sl ™
—8 0 8 —1 0
Eo/J My

Zhang, Gomes, Yao, PPO, ladecola, PRB

104, 075159 (2021).

S@AMS-~

SUPERCONDUCTING QUANTUM
MATERIALS & SYSTEMS CENTER



Variational quantum eigensolver for excited states

 Variational quantum eigensolver to prepare highly excited states (VQE-X)
* Minimize energy variance (instead of energy):

C(1¥(6)) = (Y (O)H?[(0)) — (Y (0)|H v (0))°

(b) . =0, NN, ~3- h. = 0.5, NN, . . .
S TUmosc 3. ooweec * Exponential scaling of # CNOTs with

~F- h. = 0.5, all-to-all system size

» Relax convergence condition to
represent microcanonical averages
instead, see Pollock, PPO, ladecola,
arXiv:2301.04129 (2023).

# of CNOTs

Zhang, Gomes, Yao, PPO, ladecola, PRB
104, 075159 (2021).
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Algorithms for Quantum Dynamics Simulations
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Applications of real-time dynamics

* Investigate nonequilibrium behavior
— Chemical reactions
— Scattering experiments
— Phase transformations, synthesis, metastable states, kinetic pathways, quenches

— Fundamental questions: thermalization of a closed quantum system (eigenstate
thermalization hypothsis, many-body localization)

— Scaling behavior in nonequilibrium: transport, nonequilibrium dynamics of order
parameters and correlation functions (coarsening, aging)

« Adiabatic state preparation
— Preparing ground states of Hamiltonians

H(t) = Ho(1 —t/T) + Hit/T, 0<t < T
Here, we focus on far-from-equilibrium behavior
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Quantum dynamics simulations

Initial state Energy eigenstate of many-body H

¥(0)) = ;C"W Dynamics | |B(1)) = Y cpeErtin)

“ ‘. Dynamics of an observable 0
b J .

(Ot)) = ) cacpe = m|Oln)

 Classically hard due to rapid growth of entanglement in nonequilibrium for generic H

— Reason: contains highly excited states > Volume-law entanglement entropy.
— Need many parameters to classically represent the quantum state

* Quantum simulators and computers can naturally time-evolve a quantum state
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Entanglement growth makes classical simulations hard

« Time-evolved state [¥() ch ~F'n) is strongly entangled
Contains highly excited states of H > Volume-law entanglement

Minimal dimension of matrix product operators
(MPO) grows exponentially in time for
nonintegrable models (mixed-field Ising model)

120 8o s e n-2 n—1
Growth is polynomially for integrable
/ L L— poy y J H(W* 1) = Ea‘x +2(hxa"‘+hzoz)

models (transverse-field Ising model)

FIG. 3. D (1) for local initial operators. We consider three cases
; 0(0)=075° (empty circles, squares, and triangles), for noninte-
o o 1 2 3 4 5 grable evolution H, and four cases, 0(0)=07, (full squares, dia-
o 2 4 6 8 10 12 monds), 0%, 05, (full triangles) with infinite index, and O(0)
=0%_10., (full circles) with index 2, for integrable evolution Hg.

Bond dimension
D(1)

Prosen, Znidaric (2007)
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Entanglement growth makes classical simulations hard

- Time-evolved state (1)) = Y _cae™***In) s strongly entangled
« Contains highly excited states of H > Volume-law entanglement

Minimal dimension of matrix product operators | Entanglemententropy Sa = —Tr[palnpa]
(MPO) grows exponentially in time for
nonintegrable models (mixed-field Ising model) | Reduced density matrix LA = Trpp

Quench dynamics in Heisenberg model

120 ) A P g . . ) SA ‘ E
S <« Growth is polynomially for integrable 25} ,\ ]
w1 Ve models (transverse-field Ising model) b |
qc) 80 | o 4 e = J i Saturation due to -
E = 150 finite size L=14
-_5 E,:’ 60 o 4 e =00 5 : ; I ]
T 4w oo o Entanglement entropy o fH=7 '_1(XiXi+1 +YiYip + ZiZia) -
Q s rows ballistically o t after | o5 - » 5
@ P . 9 y (t)) = e H1010101 - -- ) -
Nl global quench ool , ‘ K E
0 2 4 6 0 5 10 15 20

Prosen, Znidaric (2007)
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Dynamics simulations are opportunity for quantum advantage

- Time-evolved state (1)) = Y _cae™***In) s strongly entangled
« Contains highly excited states of H > Volume-law entanglement

Entanglement = complexity of
classical calculation

Exponential growth of Quench dynamics in Heisenberg model

2 - — classical resources like the SAF T 7§

S bond dimension in tensor 25} ]

= 100 A e x \ 3

@ networks. s Saturation due fo
GE) g pp & & Exact diagonalization is ﬁrit:r:i'zan:ﬁ ©

= limited by memory. et S L .

S 10l [H=—% (X;Xi11+YYip1 +Z:Zi1)

- 05} _iHL ]

m Opportunity for (1)) = e7*77[010101 - - - ) |

guantum computing R L o 5 .

Prosen, Znidaric (2007)
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Overview of quantum algorithms for dynamics simulations

Lie-Suzuki-Trotter Product formulas (PF)

H=1JY (ZiZi}1+ hiZ:)
L — Simple yet limited to early times for current hardware
pley

P o P noise
| P A ' . o — Trotter circuit depth scales as ~ O(t'*/®> fixed t;
S - —p B 8  Algorithms with best asymptotic scaling have
§ e > significant overhead
107 o - o
'Q « ©® ° Lo — Linear combination of unitaries (TS) [1], quantum walk
© 1w g methods [2], quantum signal processing (QSP) [3]
oo ° from[4 |« Hybrid quantum-classical variational methods [5,6]
o A SyZ‘:em Siz:“ S — Work with fixed gate depth = ideally tailored for NISQ
hardware
[1] Berry et al. (2015); [2] Childs (2004); [3] Low, — Trading gate depth for doing many QPU
Chuang (2017); [4] Childs et al., PNAS (2018); [5] Li, measurements

Benjamin, Endo, Yuan (2019); Y. Yao, PPO, T.
ladecola et al. (2021).
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Trotter Product Formula approach

 Trotter decomposition of time evolution operator
« Decompose Hamiltonian into sum of terms that include commuting operators
« Example: Mixed-field quantum Ising model

L—1 L—1 L
H=Hzz+Hz+ =V 2Z —2V) Zi-V(Zi+Z)+ Q) _X.
i=1 i=2 i=1 One step of Trotter circuit in L=5
Time evolution operator in 15t order Trotter approximation system, starting in Neel state.
—i i i ) rx @0 Hre00) ] Rt
U(At) A g Hzzt g=iHlz M iy A |  B260) | N
R 10) H Rx (0F) | Rz (68) | = —
Ry (0X) = 105 Xi/2 : Rzz(657) :
x ( ! ) Standard decomposition 10) H Rx(6) | R2(0%) — —T
7 677, of RZZ into CNOT and RZ : Rz2(6%7) 5
Rz(67) =e "% 0) H rx (0F) H R207) |- - L+
: Rzz(07%) :
R (OZZ) _ e_igiZZZiZH_l/z S— Rz(0) —D [0) : Rx (65) H Rz(0%) |— :
Z2Z\Y; — A
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NISQ Trotter simulations of mixed field Ising model

« Benchmark Trotter simulations of mixed-field Ising model on current NISQ
hardware

L—1 L—1
_ Displays many-body coherent
H = Hzz + Hz + Hx —VZI:ZZH-l 2V Z;Z V(Z +ZL)+QZX dynamics for V > Q
-

Bernien, Lukin (2017)
* Naive Trotter simulation limited to short times due to finite device coherence time

I . ; Trotter simulation on QPU
o) 42-|Rx(a{‘)|—|zzz(of)|— e - . = 12(ibmg_guadalupe) ibma._guadelupe
xH | 72 ! (a) 12 qubits, periodic bound diti

P H s HR7(02 l_ | | s qubits, periodic boundary conditions

| Rzz(0%%) : i ()
10y ———H Rx(6) — Rz(6%) | — — & 00 ]

: Rzz027| | N 0—-0—-C—90—="—0=0Q
0 —{ Bx ) H{ R20D) |- - — 0 ®

! Rz2(0%7%) ! -1.0 —e— Ideal Trotter | |
10) 4}‘| Rx (0%) | R2(6%) |— , 0 10 20 30 40 9-0-?-@-@

Vt

One step of Trotter circuit in L=5 @ ° Chen et al, PRR (2022)

system, starting from Neel state. e . . . .
Use pulse level control and error mitigation to extend simulation time
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Pulse level control and quantum error mitigation (QEM)

» Pulse level control allows to make optimal use of finite coherence time on device
— Direct implementation of RZZ gate via cross-resonance pulse > cuts program in half
Quantum error mitigation further extends final time of simulation
— Readout error mitigation (tensor product assumption): Ciae = M Cooisy. M =117 . ...
— Zero-noise extrapolation (ZNE) after increasing noise via gate foldlng G — GG'G.
— Pauli twirling: transforming noise to Pauli error channel Npp = ZhEhpE By=33 033, st 000t
— Dynamical decoupling: apply X(r) and X(-m) during qubit idle time @ el twiling
— Symmetry-based postselection: physically motivated

Postselection into physically 1.4
relevant part of Hilbert space 13

(@) Error reduction

(X) /

>

50

ZNE using

mitig

antum Error Correction and Applications in Condensed Matter Physics, USQIS School

s 08

£

0.2
0.0

L= 06 I}
SANE L]

’ -e- 19 Ideal Trotter
i * 19 ED

81 ¢ |\ —e— 12Ideal Trotter
¢ /\ 17 —e— 12ED
e t AR ’

20, o
L a4 ad »

0 5 10 15 20 25 30 35 40
Vt

(b) Error simulation ) N/\ = FA[“] + Z ea.b[ago{)]’
(a,b)#(0,0)

Pauli twirling converts
noise to stochastic form
> justification for ZNE

Wallmann, Emerson; Li,
Benjamin (2017)
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Extending simulation time using pulse control and QEM

L

=12 (ibmq_guadalupe)_

-1.0

(a)

—e— |deal Trotter

0.25

0.20
ey
015

0.10

0.05

0.00

L = 12(ibmg_guadalupe)

0.5
0.0
-0.5
—e— |deal Trotter fib
0.20
0.15
0.10 #W
0.05 o 2cnor
0.00 ' sl
0 10 30 40

20
Vt

Chenetal., PRR (2022)

Postselection only
L = 12(ibmg_guadalupe)

0.5
2

B 0.0
N

-0.5

-1.0 —e— Ideal Trotter fib
0 10 20 30 40
Vit

See also the work by the
IBM group

Article | Published: 06 February 2023
Scalable error mitigation for noisy quantum circuits
produces competitive expectation values

Younaseok Kim &9, Christopher ., Wood, Theodore J. Yoder, Sath T. Merkel, Jay M, Gambetta, Kristan

Temme & Abhinav Kandala &

Nature Physics 19, 752-759 (2023) | Cite this article

Pulse and zero-noise extrapolation (ZNE) are effective strategies to reduce errors.
But: ZNE is heuristic and cannot extend simulation time beyond coherence time of device.
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Scaled up simulations: approaching quantum utility regime

« Recent Nature publication from the IBM group: transverse-field Ising model
dynamics simulations on 127 qubits

» Uses Zero-Noise Extrapolation (ZNE) informed by sparse Pauli noise tomography

Article | Open Access | Published: 14 June 2023 Hamiltonian

Evidence for the utility of quantum computing before

fault tolerance H=-] } ZZ;+h} X,
"y i

Youngseok Kim &, Andrew Eddins &, Sajant Anand, Ken Xuan Wei, Ewout van den Berg, Sami

Rosenblatt, Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme & Abhinav Kandala Initial state

Nature 618, 500-505 (2023) | Cite this article ‘w (t — 0)> . ‘0> X127

88k Accesses | 6 Citations | 631 Altmetric | Metrics

« Stimulated several classical simulation works, e.g. Tindall et al., arXiv:2306.14887;
Begusic, Chan, arXiv:2306.16372.

« Demonstration of fruitful interplay of quantum and classical simulations
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Trotter dynamics of 127 qubit transverse-field Ising model

— — — — . .| oEmoRRCEROm m‘rﬁtﬂssf‘iﬂﬁﬂk&ﬁ"&ﬁww
» < | & : g if
g % & s 2.
g 1) @ e @ o gEcEesse ;_F‘: SOEEDERPIIIIC NI IORITD 2
— = — - Im | £ - 2. 4
= — mnm:mnfgmﬁ Tt A S ) av\:m%
R0, L Noise g é
Rxfa,) _D@ég_ LT g.u; IU I r:-m G BT u‘gm{ mwi :.fxu% PO,
g 2
Ry6,) %ﬁ < E\Wﬂ G PR u‘ 2liise) I;lw R Jutitm?;xtt?}ut."'; ’h’mé
n 4 4 - - . K] Z & 4
Twirl  Twirlt ¥ & .. g
[T = i | - N — . A
b _ = s % i e : %‘ : 2
D-—0"0=00"0=0"0-00"0=0-"0=0"C¢ ° ¥ ﬁﬁ} el
15, 16 17 o

I

éﬂk&[l%‘“l{ mﬂnn’) llﬁll&(l lgllf Xll[ﬁllfﬂﬁ

—|Hx6t = ” e—lhﬁtX l‘l
i i

d : —|H226t ”(,J> UﬁtZZl l_l<lJ) Rzzj( 2_/6t)

Ry (2h60),

St
Dji]«“ UQHAQ

>

Uy

CJ L)

53 Peter P. Orth | Quantum Error Correction and Applications in Condensed Matter Physics, USQIS School

Y
t'vm.r)m_, L‘fmﬁ XZ1vZ122
N N . @

Trotter circuit contains
three layers

Pauli twirling transforms
the noise to Pauli noise

Efficient noise tomography
using a sparse Pauli noise
model ansatz

Can precisely tune the
noise for ZNE since noise
is well characterized
(probabilistic noise
amplification)
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Trotter dynamics of 127 qubit transverse-field Ising model

a b c 12 l
1.2 7 ° °
® [
1.0 -eeeeeeees T
1.0 . s
n."' .'{ c O
= "Q O 0.8 1
o o Y, kS (0]
0.8 S 084 .. %" =
“> e 2r N 2 ©
R ] 5 06 o
= e 8 s E 0o
0.6 1 — 7ZNE (exp) 0.6 1 g
— ZNE (linear) 5 041
—G=10 z
0.4 G=12 1 0.4 1
—G=16 ‘ 0.2 - ldeal
. . . . . — T . O Unmitigated
0 500 1,000 1,500 2,000 © ARy <9 ‘5@6 %@b ® Mitigated
Random circuit instances Noise gain (G) O <O 0 T T T T T
& A\ 4 8 12 16 20
O
Trotter steps
Fig.2|Zero-noise extrapolation with probabilisticerror amplification. linear extrapolation (linear, light blue) when differences between the converged
Mitigated expectation values fromTrotter circuits at the Clifford condition estimates of (Zyo¢) .0 are well resolved. b, Magnetization (large markers) is
6,=0.a, Convergence of unmitigated (G =1), noise-amplified (G > 1) and noise- computed asthe mean of theindividual estimates of (Z,) for all qubits (small
mitigated (ZNE) estimates of (Z,,,) after four Trotter steps. Inall panels, error markers).c, Ascircuitdepthisincreased, unmitigated estimates of M,decay
barsindicate 68% confidence intervals obtained by means of percentile monotonically fromtheideal value of 1. ZNE greatly improves the estimates
bootstrap. Exponential extrapolation (exp, dark blue) tends to outperform even after 20 Trotter steps (see Supplementary Information Il for ZNE details).
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Classically verifiable regime

O Unmitigated = ® Mitigated — MPS (y = 1,024; 127 qubits) — isoTNS (y = 12; 127 qubits) = Exact

- ‘ Magpnetization M, ‘ b ‘ (X13,20,31Y0,30Z8,12,17,28,32) = (X37,41,52,56,57,58,62,70 75238,40,42,63,72,80,90,01)
1.0 10 + 1.0 I L
08" 0.8 08¢t
0.6} Unmitigated © % 0.6 0.6}

‘ 1.0

‘ 0.8
04} i © 04 04rF

0.6
3 Exact
3 o e ; 0.2 02}
0 0 0 [
0 /8 /4 3n/8 /2 0 /8 /4 3n/8 /2 0 /8 n/4 3n/8 /2
R, angle 6, Ry angle 6, Ry angle 6,
Fig.3|Classically verifiable expectation values from127-qubit, depth-15 Upperinsetsinall panelsillustrate causal light cones, indicatinginblue the

Clifford and non-Clifford circuits. Expectation value estimates for 6, sweeps final qubits measured (top) and the nominal set of initial qubits that can
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Classically “challenging” regime

- (X37.41,52,56,57,58,62,79 38,40,42,63,72,80,90,91275) b (Zep)
1.0}
0.8}
5 LS o Unmitigated o Unmitigated
: 68 qubits /z s i
06} ; e Mitigated e Mitigated
: —— MPS (¢ = 3,072; — MPS (y = 1,024;
LCDR) LCDR)
o5 R — isoTNS (y = 12;
ot 127 qubits)
0.2}
0 i 3 L4
0 n/8 /4 3n/8 /2 0 /8 /4 3n/8 /2
Ry angle 6, Ry angle 6,
Fig.4|Estimating expectation values beyond exact verification. Plot (X37,41.52.56.57,58.62.75Y30.40,42.63,72.90,90,9:.275) Zea)

@ |
' Classical simulations
using sparse Pauli
dynamics method
(Begusic, Chan, arXiv
(2023).

Even if this work is not yet beyond
classical capabilities, it is clear
that Trotter dynamics is a leading
candidate for quantum advantage

w4 3w w2 0 e 4
Rx angle 6, Rx angle 8,

3n8 2
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Variational Quantum Dynamics

2
Variational form of quantum state Von Neumann equation

S L?
g NH o0 Ay 1Wo). —> % =L(p) = —i[’H,@'

T a
MacLachlan distance b/w exact  pv
Variational parameters evolve in time and variational time evolution

[1] Li, Benjamin, Endo, Yuan (2019).
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Variational Quantum Dynamics

2
Variational form of quantum state Von Neumann equation

9plo] ,
89# 9# - E[p]

Ng—1
|\IJ[9]> _ H 6_7;0“'/&“ |\1/0> |:> % = —Z[H p]/'
T j=0 Z My 6,8, — 2 Vi, + Tr[L]p]?].
1

MacLachlan distance b/w exact  pv
Variational parameters evolve in time and variational time evolution

M measures state

o 5 change under
Minimize L parameter change
> Myuwb, = V. g

9p|6] Ip[6]
EOM f iational t — M, =Tr
or variational parameters v o [ 20, 00,
Matrix M,,,, and vector V, measured on QPU 8,0 0

\

Scaling to large system sizes challenging as N ,cqs & N5 and N
can grow exponentially with system size for nonintegrable models
= Opportunity at early times and for integrable models

V depends on Hamiltonian

[1] Li, Benjamin, Endo, Yuan (2019).
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Application: continuous quench Iin spin chain

Linear quench of anisotropic XY chain in transverse magnetic field

(=0.7,1) (1.6,1)
R N=-2 . L N-1 ) . 21 PM FM, PM
H=-J Xoj [+ 12k + = FTi| + ;Zf with () =1- = ot -
i= = FM,
yl (=07,~1) a6—1)
» Follows exact solution during and after quench, shown for N=8 B P re—.

Circuit depth saturates at 100 CNOTs << Trotter circuit depth [10)*4 CNOTs
Simulate system with gate depth independent of time t > can simulate to arbitrary

times! » cesp Ve (sify |
LOge— o (sisin) o (sisioy)) I =
53 a ) -
3 = 104 ,n‘—
_5 0.5 g e
4&; O /
o s 103 ’I === Trotter
§ 0.0 g 2,' - AVQDS
g g 10 :
3 -0.5 3
1
1ok . ] w0 , Y. Yao, .., PPO, PRX Quantum (2021)
: 1 2 0 1 2

t/T t/T
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Summary of CMP applications part

« Condensed Matter Physics provides a rich set of problems that are relevant for
domain specialists in physics, chemistry, material science

* Problems are often tunable and thus ideal for benchmarking and tuning into the

quantum advantage regime .
. Promising directions: Thanks for your attention!

— Simulation of nonequilibrium quantum dynamics

» Trotter product formula approach is conceptually simple: combined with quantum error
mitigation this is good candidate to reach beyond classical regime soon (maybe already)

* Multi-product formulas (2207.11268, 2212.14144)

« Variational methods can in principle extend simulation time further out, but suffer from
measurement overhead and difficult classical optimization task

— Subspace expansion methods avoid classical optimization and are closer in spirit to ED: not
covered here, but promising approach both for ground state and dynamics simulations

— Finite temperature simulations in d > 1: hard classically, so worth trying QC approaches

60 Peter P. Orth | Quantum Error Correction and Applications in Condensed Matter Physics, USQIS School - /‘&S QM”S; S ;t::smr;z‘uscvrsurgmqsu&%?;



