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Why probing in non-equilibrium?

Give access to excitations and their relaxation

Inelastic scattering (neutron, resonant x-ray) probes dynamic response in 

equilibrium 

Pump-probe spectroscopic techniques probe non-equilibrium response

Measure fluctuations arising from nearby competing phases

3/9/2016

Primary interest and puzzle of correlated materials 

often lies in properties of excited states.

Examples: 

Linear in temperature resistivity in cuprates

and heavy-fermions

Fractionalized excitations in spin liquids (e.g. 

α-RuCl3)
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Universality at classical and quantum criticality

3/9/2016

Rare-earth magnetic insulators

Heavy-fermion compounds

Unconventional superconductors

2D electron gases

Materials:

Divergent correlation length and time

and 

Power-laws, critical exponents

Data collapse due to scaling

Precise experiment-theory comparison

Universal behavior:

[1] S. Sachdev “Quantum Phase Transitions, (1999); [2] M. Vojta, Rep. Prog. Phys. 66, 2069 (2003);

[3] P. C.Hohenberg, B. I Halperin, RMP 49, 435 (1977); [4] N. Markovic et al., PRB 60, 4320 (1999).
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Universality at classical and quantum criticality

3/9/2016

From [4]

[1] S. Sachdev “Quantum Phase Transitions, (1999); [2] M. Vojta, Rep. Prog. Phys. 66, 2069 (2003);

[3] P. C.Hohenberg, B. I Halperin, RMP 49, 435 (1977); [4] N. Markovic et al., PRB 60, 4320 (1999).

Universality comes with potential for quantitative predictions for strongly 

interacting systems far from equilibrium. 

Example: N-component φ4 field theory
N=1: Ising model in transverse field (CoNbO6)

N=2: Sc-insulator QPT (XY model)

N=3: quantum dimer systems (TlCuCl3)

Here: z=1
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Universality in equilibrium

Scaling of magnetization in equilibrium [1]

3/9/2016

Data collapses onto universal curve:

Critical exponents define universality class:

Depends only on dimensionality and symmetry

Calculate exponents using the renormalization 

group in small                     or

[1] C. C. Huang, J. T. Ho, PRB 12, 5255 (1975); [2] J. C. le Guillou, J. Zinn-Justin, Phys. Rev. B 

21, 3976 (1980). 

Theoretical prediction from ε-expansion [2]: 
From [1]
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Does universality occur also in non-equilibrium situations?

3/9/2016

Is universality in non-equilibrium characterized by 

new critical exponents?

Universality and scaling in non-equilibrium
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Does universality occur also in non-equilibrium situations?

3/9/2016

Near-equilibrium dynamics and long-time approach to equilibrium 

described by power laws with equilibrium exponents [1]

Kibble-Zurek mechanism describing defect formation in parameter 

sweeps through critical points [2-6]

YES!

Universality and scaling in non-equilibrium

[1] P. C.Hohenberg, B. I Halperin, RMP 49, 435 (1977); [2] T. Kibble, J. Phys. A 9, 1387 (1976). [3] W. 

H. Zurek, Nature 317, 505 (1985); [4] A. Polkovnikov et al. RMP 83, 863 (2011); [5] S.-Z. Lin et al., 

Nat. Phys. 10, 970 (2014); [6] S. M. Griffin et al., PRX 2, 041022 (2012).
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Does universality occur also in non-equilibrium situations?

3/9/2016

Universality and scaling in non-equilibrium

[4] S.-Z. Lin et al., Nat. Phys. 10, 970 (2014); [5] S. M. Griffin et al., PRX 2, 041022 (2012).

Example (Cheong group): 

Thermal Kibble-Zurek quench in 

hexagonal manganites RMnO3 with 

R = Sc, Y, Dy, Lu 

From [4]From [5] From [4]



21

Does universality occur also in non-equilibrium situations?

3/9/2016

Is universality in non-equilibrium characterized by 

new critical exponents?

YES!

Universality and scaling in non-equilibrium

YES, sometimes! Topic of today’s talk

Can use non-equilibrium dynamics as a new tool to study 

quantum critical materials.  

For classical systems pionnered by [1] H. Janssen et al., Z. Phys. B 73, 539 (1989).

See also [2] J. Bonart et al., J. Stat. Mech. (2012) P01014. 
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General protocol of a quench

Bring system to non-equilibrium by rapid change of parameter 

Strain [1], magnetic field [2]: correlated materials

Temperature [3, 4]: ferroelectric materials RMnO3

Laser intensity [5, 6, 7]: cold-atom setups

3/9/2016

Theoretically well-defined protocol

Prepare system in ground state of 

initial Hamiltonian 

Perform unitary time evolution with 

a different Hamiltonian

Non-equilibrium dynamics:

[1] C. W. Hicks et al., Science 344, 284 (2014).; [2] C. Ruegg (private communication); [3] S.-Z. Lin et al., Nat. 

Phys. 10, 970 (2014); [4] S. M. Griffin et al., PRX 2, 041022 (2012); [5] E. Nicklas et al., PRL 115, 245301 (2015);  

[6] P. M. Preiss et al., Science 347, 1229 (2015); [7] M. Schreiben et al., Science 349, 842 (2015)
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Model and quench protocol

3/9/2016

Quench deposits

energy
Sudden quench protocol (fast KZ sweep)

Hamiltonian: N-component φ4-field theory

Equilibration?

At finite temperature?
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Model and quench protocol

3/9/2016

Ohmic z = 2 

Sub-Ohmic, z < 2

Super-Ohmic, z > 2

Quench in closed system: [1] A. Chandran et al., Phys. Rev. B 86, 064304 (2012), 

[2] A. Chiocchetta et al. Phys. Rev. B 91, 220302 (2015), A. Maraga et al. arXiv:1506.04528 (2015). 

Hamiltonian: N-component φ4-field theory coupled to a bath

Bath spectral function:

Induces dissipation, dynamic exponent z > 1

Bath ensures equilibration 

at T = 0 at long times. 

Quench deposits

energy
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Main results and scaling analysis

3/9/2016
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Scaling in non-equilibrium: order parameter

Universal dynamics of the order parameter

3/9/2016

Classical post-quench dynamics: [1] H. Janssen et al. Z. Phys. B 73, 539 (1989); [2] J. Bonart et al., J. 

Stat. Mech. (2012) P01014. 

Quantum post-quench dynamics: [3] P. Gagel, PPO, J. Schmalian, PRL 113, 220401 (2014); [4] P. 

Gagel, PPO, J. Schmalian, PRB 92, 115121 (2015). 

For closed systems see, e.g., [5] A. Chiocchetta et al. Phys. Rev. B 91, 220302 (2015)

Quench right to the critical point
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Scaling in non-equilibrium: order parameter

3/9/2016

Long times: 

Long-time approach to equilibrium is 

described by equilibrium scaling exponents.

Quench right to the critical point
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Scaling in non-equilibrium: order parameter

3/9/2016

Long times: 

Quench right to the critical point

Short times: 

Potential for a new dynamical exponent. 

[1] P. Gagel, PPO, J. Schmalian, PRL 113, 220401 (2014); [2] P. Gagel, PPO, J. Schmalian, 

PRB 92, 115121 (2015). 
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Scaling in non-equilibrium: order parameter

3/9/2016

Long times: 

Quench right to the critical point

Short times: 

Potential for a new dynamical exponent. 

Crossover timescale: 

[1] P. Gagel, PPO, J. Schmalian, PRL 113, 220401 (2014); [2] P. Gagel, PPO, J. Schmalian, 

PRB 92, 115121 (2015). 

Damping sets beginning of 

universal regime
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Scaling in non-equilibrium: correlation length

3/9/2016

Correlation length becomes time-dependent. At critical point we find

Rapid quench first leads to a non-universal collapse of the correlation 

length [1, 2]

Then, dynamic build-up of correlations

[1] P. Gagel, PPO, J. Schmalian, PRL 113, 220401 (2014); [2] P. Gagel, PPO, J. Schmalian, 

PRB 92, 115121 (2015). [3] E. Nicklas et al., PRL 115, 245301 (2015).

Light-cone growth of correlation length 
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Scaling in non-equilibrium: correlation functions

Dynamic scaling of correlation and response functions

In equilibrium:

3/9/2016

Singular dependence 

captured by new exponent θ

Smooth scaling function F

Non-equilibrium: now depends in general on both time variables t and t’



33

Cold-atom experimental realization of quench to 

quantum critical point

3/9/2016
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Dynamic scaling after quench in cold-atom gas

3/9/2016

Two-component 1D degenerate Bose gas = spin gas

Miscible-Immiscible quantum phase transition 

Hamiltonian: Rabi coupling ∝ laser intensity

Single-ion anisotropy ∝

Density difference = Spin z-component

Heisenberg exchange from kinetic energy
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Miscible-Immiscible quantum phase transition

3/9/2016

Two-component 1D degenerate Bose gas = spin gas

Miscible-Immiscible quantum phase transition 

Hamiltonian: Rabi coupling ∝ laser intensity

Single-ion anisotropy ∝

Miscible = Paramagnetic

Immiscible = Ferromagnetic

Ising quantum 

phase transition
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Quench of Rabi coupling  

3/9/2016

Sudden quench from paramagnetic 

state towards critical point

Measure spin-spin correlation function 

to extract correlation length ξ

Correlation length increases as

Here: z = 1 (mean-field result)

Reason: technical limitation to 

come close enough to critical 

point to reach critical regime 
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Scaling of correlation function at fixed time

3/9/2016

Here: ν =  ½ (mean-field result)

Data collapse of correlation function at 

long times when rescaling lengths with ξeq

Interaction effects only visible for quenches closer to critical point

Short-time scaling could be observed in non-equal time correlation 

functions and when quenching out of ordered phase

Equilibrium correlation length scales as
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Dynamic scaling after rapid quench to 

quantum criticality

3/9/2016
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Quench in non-interacting model coupled to bath

Post-quench retarded Green’s functions for u=0 in presence of bath

3/9/2016

Heisenberg equations of motion

Source operator depends on bath initial states 
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Quench in non-interacting model coupled to bath

Post-quench retarded Green’s functions for u=0 in presence of bath

3/9/2016

Heisenberg equations of motion

Source operator depends on bath initial states 

Solve via Laplace transformation 

Force operator 

Bare retarded

post-quench Green’s function
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Bare post-quench Keldysh Green’s function

Find G via commutators of 

3/9/2016

Retarded: 

Correlation:

Depends on both t and t’. Use double Laplace transform

Depends on (t - t’) only (no longer the case for u > 0)

Memory function M depends on initial conditions:
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Bare post-quench Keldysh Green’s function

3/9/2016

Exponential decay to equilibrium at 

equal times and u=0. 

Overdamped for z > 2: sub-Ohmic

Underdamped for z ≤ 2: (super)-Ohmic

For scaling limit of large 

initial mass      .
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Equal time correlations in presence of interactions

3/9/2016

Free Keldysh function approaches equilibrium exponentially

Interacting Keldysh function exhibits power-law decay

Amplitude depends on universal exponent θ

and coefficient: 

Critical fluctuations significantly slow down equilibration.

with
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Distribution Wigner function at long times

At long times it holds 

Introduce time-dep. distribution function

3/9/2016

Deviation from equilibrium

Non-thermal since algebraically decaying at 

large frequencies

Slow approach to equilibrium described by 

power-law

Can change sign: density matrix non-

diagonal in energy basis (coherence)
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Solving the (non-)equilibrium large-N equations

3/9/2016
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Interactions in large-N approximation

Pre-quench equilibrium large-N equations 

3/9/2016

Dynamic critical 

exponent

Matsubara Green’s function

Bath induced self-energy
Initial distance to QCP 

(in presence of bath and 

interactions)

Pre-quench order 

parameter value



48

Interactions in large-N approximation

Pre-quench equilibrium large-N equations 

3/9/2016

Ordered phase: 

Phase transition when            and 

Depends on cutoffs     and  

Universality as function of 

For example: with

Massless spectrum (in 1/N)
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Post-quench large-N equations

3/9/2016

Retarded Green’s function contains time-dependent mass as well 

Non-equilibrium large-N equations: 

Time-dependent mass

Time-dependent order parameter

Self-energy given by Keldysh Green’s function  
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Quench from disordered phase to critical point

Initial magnetization vanishes

Quench right to critical point 

3/9/2016
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Quench from disordered phase to critical point

Initial magnetization vanishes

Quench right to critical point 

Ansatz for mass term (that provides self-consistent solution)

3/9/2016

Light-cone amplitude

Light-cone dynamical 

growth of correlation length 
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Consequence of dynamic mass r(t) 

Logarithmic divergencies at leading order

Bare Green’s function completely local at short times

3/9/2016

Justification for deep-quench limit: locality corresponds to small correlation length

directly after the quench. 
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Consequence of dynamic mass r(t) 

Logarithmic divergencies at leading order

3/9/2016

New non-equilibrium critical exponent

Determined by light-

cone amplitude a. 

Scaling form of retarded Green’s function
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Consequence of dynamic mass r(t) 

Logarithmic divergencies at leading order

3/9/2016

New non-equilibrium critical exponent

For Ohmic bath: 
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Determining light-cone amplitude a 

Crucial: interacting Keldysh function decays as power-law at long times

3/9/2016

Critical fluctuations 

slow down 

equilibration.

Inserting into self-consistency equation: 

Yields: 

Solve numerically for general z

Exponent: 
Interaction fixed-point: 
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Order parameter dynamics

3/9/2016

Two different universal time regimes

Short time                               for 

Long time                                          for 

New short time critical exponent depends on z 

Recovery of magnetization due to fast growing correlation length

Depends on dynamic critical exponent z

Test hyperscaling, since θ vanishes in mean-field

Ohmic and sub-Ohmic
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Order parameter dynamics

3/9/2016

Two different universal time regimes

Short time                               for 

Long time                                          for 

New short time critical exponent depends on z 

Recovery of magnetization due to fast growing correlation length

Depends on dynamic critical exponent z

Test hyperscaling, since θ vanishes in mean-field

super-Ohmic
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Summary and Outlook

3/9/2016

Quench in closed system

Coupled bosonic order parameters, e.g. 

competition between superconductivity 

and magnetism.

Fermionic field theory (metallic 

magnets, graphene)

Propagation of entanglement

Quench to quantum critical points results 

in universal post-quench dynamics

Characterized by a new critical exponent 

Correlation length collapses after quench 

and recovers in a light-cone fashion 

Thank you for your attention. 
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