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1 Basics: p, channels, noise

1.1 Density operator p (Review)

A general state of a quantum system is described by the density operator

pi= Z ]11' i) (il (1)

v prob. to find system in pure state |1;)

The |¢;) are normalized, so (1;|1;) = 1, but do not need to be orthogonal.

We write an ensemble of pure states as & = {p;||[¢;) }

Properties of the density operator
The density operator has to fulfill two properties to describe an actual ensemble.
(i) Trp=1.
(ii) p is a positive operator, so (|p|y)) > 0 V|i).
Proof:
—: Suppose p = > . pi|1;) (1] is a density operator. Then,
(i) We get
np:; Tr(|43) (i) =;pi=1 2)
Do mlwa) (Wilm)=(i|vi)=1
(ii) Take a general vector |¢), then

Il
(plole) =D (elwi)(wilp) > 0 (3)

K2

<: Suppose p is a positive operator with Tr p = 1. Since it is a positive operator, it is also hermitian (pf = p)
and therefore normal (pp = pp'), which allows for spectral decomposition. This means that

=N ( @
© 7 orthonormal tT)asis (i]g)="0;

Due to Trp=1= )", \; =1 = \; can be interpreted as probabilities.
= p describes an ensemble of states &€ = {\; = p;||i)}

Purity

A density operator p obeys Tr p? = 1 iff p describes a pure state, i.e. p = |¢) (1]
Proof:

=: Suppose p = |} (Y| = p? = |} (Y |Y) (| = p and therefore Tr p? = Trp = 1.

«: Take a density operator p =), p;|i)(i| We can write

We distinguish the cases



(1) onlyonep; #0 = p; =1,po=---=0= Trp?> =1
(2) at least two p; # 0: from ). p; = 1 we get that

2

<sz> =1e) pl+> pipj=1 (6)
i i i#j

= >, p? < 1if at least two p; > 0 (mixed state).

Theorem: Density operators form a convex set

Given two density operators p; and ps, the convex linear combination

p=Ap1+ (1 —=XNp with0< A <1 (7)
is also a density operator
/1
P2
convex set non-convex set

Figure 1: Examples for convex and non-convex sets: convexity means that for any two points, the connecting
line is always in the set.

Proof:

——

1

(i) Trp=ATrp1 +(1—A)Trpy =1
] =
1_

(ii) (elple) = A{plpile) +(1 = A) {plp2e) = 0
>0 >0

Such a state p = Ap1 + (1 — ) p2 is called a mixture of states p;.

Extremal points

States in a convex set can be expressed as a convex linear combination of its extremal states.

Here, the extremal states are pure states [1;) (1], since p =Y. p;[¢;)(1;|. Pure states are extremal points as
they cannot be expressed as a sum of other states.

Proof:

Consider p = |¢) (| and let |1p1 ) be a vector perpendicular to |¢): (1 |p) =0, so

(Worlplhr) =0=XA{Prp1| ) +(1 =) (Prp2|L)] (8)
>0 >0

= either A =0,1: p1 = p,p2 = p or (o|p1|Yr) = (Yrlp2|pr) =0V [4).

States on the boundary of the convex set of p

States p at the boundary have at least one zero eigenvalue, since there are states nearby with negative
eigenvalues.



Example: single qubits
We have a general single-qubit pure state

1

S +73) with |71 = 1,5 = (X, Y. 2) (9)

p

Figure 2: Bloch-sphere

e pure states have |7] = 1,

e mixed states have |7] < 1.

Postulate 1

Associated to any isolated quantum system is a Hilbert space H (complex vector space with an inner
product). The system is completely characterized by the density operator p (Trp = 1,p > 0).

If the state is p; with probability p;, then
p=>> pipi» y_pi=1 (10)

Postulate 2

The time-evolution of a closed quantum system is described by a unitary transformation U with

p(tz) = U(tr,t2)p(t1)U (t1, t) (11)
Explicitely we have
ta
U(ty,t2) = Texp fi/ ds H(s) (12)
t1 T

Hamiltonian.

Postulate 3

Measurements are described by a collection of measurement operators {M.}

mrefers to the possiblchcasurcmcnt outcomes
acting on the state space of the system.
If state before measurement is p, the result m is observed with probability p(m) = Tr(MLMmp). The state
after the measurement is

M,,pM}
mp m , ZM»,T”Mm — l (13)

p—= —F
TI“(ManMm,0> m



Special case: Projective measurement

Let M,, = P,, with P2 = P,, = |m)(m|. We get P! = P,,, Py, P = Pp,0pms. This gives

> MiMy =Y PiP,=) Pn=1 (14)

m

We call an observable M =" |m)(m| =), mP,. We measure m with probability p(m) = Tr(pP,,)

and the state afterwards becomes p — {;’E”]’;P )

POVM: positive operator-valued measurements

We define a POVM by {E,,} where E,, = M/ M,,, which are positive operators (E,, > 0).

m Em = 1. We get p(m) = Tr(E,,p).

Since E,,, > 0= Eil = FE,, = allows spectral decomposition. However, E,, E,,/ #  Endmm-
g

They obex the completeness relation )

in general
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