Quantum Algorithms and Error Correction

Peter Orth

May 30, 2023

Contents

1	Basics: ρ , channels, noise1.1Density operator ρ (Review)	2 2
2	Tomography: State & gate tomography	6
3	Quantum algorithm: Trotter	6
4	Variational quantum algorithms	6
5	Quantum error mitigation	6
6	Quantum error correction	6
7	Literature	6

1 Basics: ρ , channels, noise

1.1 Density operator ρ (Review)

A general state of a quantum system is described by the *density operator*

$$\rho := \sum_{i \text{ prob. to find system in pure state } |\psi_i\rangle\langle\psi_i|.$$
(1)

The $|\psi_i\rangle$ are normalized, so $\langle\psi_i|\psi_i\rangle = 1$, but do not need to be orthogonal.

We write an ensemble of pure states as $\mathcal{E} = \{p_i || \psi_i \rangle \}$

Properties of the density operator

The density operator has to fulfill two properties to describe an actual ensemble.

- (i) $\text{Tr} \rho = 1.$
- (ii) ρ is a positive operator, so $\langle \psi | \rho | \psi \rangle \ge 0 \ \forall | \psi \rangle$.

Proof:

- \rightarrow : Suppose $\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i|$ is a density operator. Then,
 - (i) We get

$$\operatorname{Tr} \rho = \sum_{i} \underbrace{\operatorname{Tr}(|\psi_i\rangle\langle\psi_i|)}_{\sum_{m}\langle m|\psi_i\rangle\langle\psi_i|m\rangle=\langle\psi_i|\psi_i\rangle=1} = \sum_{i} p_i = 1$$
(2)

(ii) Take a general vector $|\varphi\rangle$, then

$$\langle \varphi | \rho | \varphi \rangle = \sum_{i} \overbrace{\langle \varphi | \psi_i \rangle \langle \psi_i | \varphi \rangle}^{= |\langle \psi | \varphi \rangle|} \ge 0$$
(3)

 \leftarrow : Suppose ρ is a positive operator with $\operatorname{Tr} \rho = 1$. Since it is a positive operator, it is also hermitian $(\rho^{\dagger} = \rho)$ and therefore normal $(\rho^{\dagger} \rho = \rho \rho^{\dagger})$, which allows for spectral decomposition. This means that

$$\rho = \sum_{i} \lambda_{i} \qquad |i\rangle \qquad (4)$$
orthonormal basis $\langle i|j\rangle = \delta_{ij}$

Due to $\operatorname{Tr} \rho = 1 \Rightarrow \sum_{i} \lambda_{i} = 1 \Rightarrow \lambda_{i}$ can be interpreted as probabilities. $\Rightarrow \rho$ describes an ensemble of states $\mathcal{E} = \{\lambda_{i} \equiv p_{i} || i \rangle\}$

Purity

A density operator ρ obeys ${\rm Tr}\,\rho^2=1$ iff ρ describes a pure state, i.e. $\rho=|\psi\rangle\langle\psi|$ <u>Proof:</u>

- $\Rightarrow: \text{ Suppose } \rho = |\psi\rangle \langle \psi| \Rightarrow \rho^2 = |\psi\rangle \langle \psi|\psi\rangle \langle \psi| = \rho \text{ and therefore } \operatorname{Tr} \rho^2 = \operatorname{Tr} \rho = 1.$
- $\Leftarrow:$ Take a density operator $\rho = \sum_i p_i |i\rangle \langle i|$ We can write

$$\operatorname{Tr} \rho^{2} = \sum_{i,j,k} p_{i} p_{j} \underbrace{\langle k|i \rangle}_{\delta_{ki}} \langle i|i \rangle \underbrace{\langle j|k \rangle}_{\delta_{ik}} = \sum_{i} p_{i}^{2}$$

$$\tag{5}$$

We distinguish the cases

- (1) only one $p_i \neq 0 \Rightarrow p_1 = 1, p_2 = \dots = 0 \Rightarrow \operatorname{Tr} \rho^2 = 1$
- (2) at least two $p_i \neq 0$: from $\sum_i p_i = 1$ we get that

$$\left(\sum_{i} p_{i}\right)^{2} = 1 \Leftrightarrow \underbrace{\sum_{i} p_{i}^{2}}_{i} + \sum_{i \neq j} p_{i}p_{j} = 1$$

$$(6)$$

 $\Rightarrow \sum_i p_i^2 < 1$ if at least two $p_i > 0$ (mixed state).

Theorem: Density operators form a convex set

Given two density operators ρ_1 and ρ_2 , the convex linear combination

$$\rho = \lambda \rho_1 + (1 - \lambda) \rho_2 \text{ with } 0 \le \lambda \le 1$$
(7)

is also a density operator

Figure 1: Examples for convex and non-convex sets: convexity means that for any two points, the connecting line is always in the set.

Proof:

(i)
$$\operatorname{Tr} \rho = \lambda \underbrace{\operatorname{Tr} \rho_1}_{=1} + (1 - \lambda) \underbrace{\operatorname{Tr} \rho_2}_{=1} = 1$$

(ii) $\langle \varphi | \rho | \varphi \rangle = \lambda \underbrace{\langle \varphi | \rho_1 | \varphi \rangle}_{>0} + (1 - \lambda) \underbrace{\langle \varphi | \rho_2 | \varphi \rangle}_{>0} \ge 0$

Such a state $\rho = \lambda \rho_1 + (1 - \lambda) \rho_2$ is called a mixture of states ρ_i .

Extremal points

States in a convex set can be expressed as a convex linear combination of its extremal states. Here, the extremal states are pure states $|\psi_i\rangle\langle\psi_i|$, since $\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$. Pure states are extremal points as they cannot be expressed as a sum of other states. Proof:

<u>Proof</u>:

Consider $\rho = |\psi\rangle\langle\psi|$ and let $|\psi_{\perp}\rangle$ be a vector perpendicular to $|\psi\rangle$: $\langle\psi_{\perp}|\psi\rangle = 0$, so

$$\langle \psi_{\perp} | \rho | \psi_{\perp} \rangle = 0 = \lambda \underbrace{\langle \psi_{\perp} \rho_1 | \psi_{\perp} \rangle|}_{\geq 0} + (1 - \lambda) \underbrace{\langle \psi_{\perp} \rho_2 | \psi_{\perp} \rangle|}_{\geq 0}$$
(8)

 $\Rightarrow \text{ either } \lambda = 0,1 \text{: } \rho_1 = \rho, \rho_2 = \rho \text{ or } \langle \psi_\perp | \rho_1 | \psi_\perp \rangle = \langle \psi_\perp | \rho_2 | \psi_\perp \rangle = 0 \; \forall \; | \psi \rangle.$

States on the boundary of the convex set of ρ

States ρ at the boundary have at least one zero eigenvalue, since there are states nearby with negative eigenvalues.

Example: single qubits

We have a general single-qubit pure state

$$\rho = \frac{1}{2} (I + \vec{r} \cdot \vec{\sigma}) \text{ with } |\vec{r}| = 1, \vec{\sigma} = (X, Y, Z)$$
(9)

Figure 2: Bloch-sphere

- pure states have $|\vec{r}| = 1$,
- mixed states have $|\vec{r}| < 1$.

Postulate 1

Associated to any isolated quantum system is a Hilbert space \mathcal{H} (complex vector space with an inner product). The system is completely characterized by the density operator ρ (Tr $\rho = 1, \rho \ge 0$). If the state is ρ_i with probability p_i , then

$$\rho = \sum_{i} p_i \rho_i, \ \sum_{i} p_i = 1 \tag{10}$$

Postulate 2

The time-evolution of a closed quantum system is described by a unitary transformation U with

$$\rho(t_2) = U(t_1, t_2)\rho(t_1)U^{\dagger}(t_1, t_2) \tag{11}$$

Explicitly we have

$$U(t_1, t_2) = T \exp\left[-i \int_{t_1}^{t_2} \mathrm{d}s \frac{H(s)}{\mathrm{Hamiltonian}}\right]$$
(12)

Postulate 3

Measurements are described by a collection of measurement operators $\{M_m\}$

 \uparrow mrefers to the possible measurement outcomes

acting on the state space of the system.

If state before measurement is ρ , the result *m* is observed with probability $p(m) = \text{Tr}(M_m^{\dagger}M_m\rho)$. The state after the measurement is

$$\rho \mapsto \frac{M_m \rho M_m^{\dagger}}{\text{Tr}\left(M_m^{\dagger} M_m \rho\right)}, \ \sum_m M_m^{\dagger} M_m = \mathbb{1}$$
(13)

Special case: Projective measurement

Let $M_m = P_m$ with $P_m^2 = P_m = |m\rangle\langle m|$. We get $P_m^{\dagger} = P_m$, $P_m P_{m'} = P_m \delta_{mm'}$. This gives

$$\sum_{m} M_{m}^{\dagger} M_{m} = \sum_{m} P_{m}^{\dagger} P_{m} = \sum_{m} P_{m} = \mathbb{1}$$
(14)

We call an observable $M = \sum_{m} |m\rangle \langle m| = \sum_{m} m P_{m}$. We measure m with probability $p(m) = \text{Tr}(\rho P_{m})$ and the state afterwards becomes $\rho \mapsto \frac{P_{m}\rho P_{m}}{\text{Tr}(P_{m}\rho)}$

POVM: positive operator-valued measurements

We define a POVM by $\{E_m\}$ where $E_m = M_m^{\dagger} M_m$, which are positive operators $(E_m \ge 0)$. They obex the completeness relation $\sum_m E_m = \mathbb{1}$. We get $p(m) = \text{Tr}(E_m \rho)$.

Since $E_m \ge 0 \Rightarrow E_m^{\dagger} = E_m \Rightarrow$ allows spectral decomposition. However, $E_m E_{m'} \neq E_m \delta_{mm'}$.

- 2 Tomography: State & gate tomography
- 3 Quantum algorithm: Trotter
- 4 Variational quantum algorithms
- 5 Quantum error mitigation
- 6 Quantum error correction

7 Literature

- Preskill lecture notes
- Nielsen,Chuang book
- Wilde, Quantum Shannon theory