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1 Basics: ρ, channels, noise
1.1 Density operator ρ (Review)
A general state of a quantum system is described by the density operator

ρ :=
∑
i

pi
↑

prob. to find system in pure state |ψi〉

|ψi〉〈ψi|. (1)

The |ψi〉 are normalized, so 〈ψi|ψi〉 = 1, but do not need to be orthogonal.

We write an ensemble of pure states as E = {pi||ψi〉}

Properties of the density operator

The density operator has to fulfill two properties to describe an actual ensemble.

(i) Tr ρ = 1.

(ii) ρ is a positive operator, so 〈ψ|ρ|ψ〉 ≥ 0 ∀|ψ〉.

Proof:

→: Suppose ρ =
∑
i pi|ψi〉〈ψi| is a density operator. Then,

(i) We get

Tr ρ =
∑
i

Tr(|ψi〉〈ψi|)︸ ︷︷ ︸∑
m
〈m|ψi〉〈ψi|m〉=〈ψi|ψi〉=1

=
∑
i

pi = 1 (2)

(ii) Take a general vector |ϕ〉, then

〈ϕ|ρ|ϕ〉 =
∑
i

=|〈ψ|ϕ〉|︷ ︸︸ ︷
〈ϕ|ψi〉〈ψi|ϕ〉 ≥ 0 (3)

←: Suppose ρ is a positive operator with Tr ρ = 1. Since it is a positive operator, it is also hermitian (ρ† = ρ)
and therefore normal (ρ†ρ = ρρ†), which allows for spectral decomposition. This means that

ρ =
∑
i

λi
≥0

|i〉
↑

orthonormal basis 〈i|j〉=δij

〈i| (4)

Due to Tr ρ = 1 ⇒
∑
i λi = 1⇒ λi can be interpreted as probabilities.

⇒ ρ describes an ensemble of states E = {λi ≡ pi||i〉}

�

Purity

A density operator ρ obeys Tr ρ2 = 1 iff ρ describes a pure state, i.e. ρ = |ψ〉〈ψ|
Proof:

⇒: Suppose ρ = |ψ〉〈ψ| ⇒ ρ2 = |ψ〉〈ψ|ψ〉〈ψ| = ρ and therefore Tr ρ2 = Tr ρ = 1.

⇐: Take a density operator ρ =
∑
i pi|i〉〈i| We can write

Tr ρ2 =
∑
i,j,k

pipj 〈k|i〉︸︷︷︸
δki

〈i|i〉 〈j|k〉︸ ︷︷ ︸
δik

=
∑
i

p2
i (5)

We distinguish the cases
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(1) only one pi 6= 0 ⇒ p1 = 1, p2 = · · · = 0 ⇒ Tr ρ2 = 1
(2) at least two pi 6= 0: from

∑
i pi = 1 we get that(∑

i

pi

)2

= 1⇔
∑
i

p2
i +

∑
i 6=j

pipj = 1 (6)

⇒
∑
i p

2
i < 1 if at least two pi > 0 (mixed state).

Theorem: Density operators form a convex set

Given two density operators ρ1 and ρ2, the convex linear combination

ρ = λρ1 + (1− λ)ρ2 with 0 ≤ λ ≤ 1 (7)

is also a density operator

convex set

ρ1

ρ2

non-convex set

Figure 1: Examples for convex and non-convex sets: convexity means that for any two points, the connecting
line is always in the set.

Proof:

(i) Tr ρ = λTr ρ1︸ ︷︷ ︸
=1

+(1− λ) Tr ρ2︸ ︷︷ ︸
=1

= 1

(ii) 〈ϕ|ρ|ϕ〉 = λ 〈ϕ|ρ1|ϕ〉︸ ︷︷ ︸
≥0

+(1− λ) 〈ϕ|ρ2|ϕ〉︸ ︷︷ ︸
≥0

≥ 0

Such a state ρ = λρ1 + (1− λ)ρ2 is called a mixture of states ρi.

Extremal points

States in a convex set can be expressed as a convex linear combination of its extremal states.
Here, the extremal states are pure states |ψi〉〈ψi|, since ρ =

∑
i pi|ψi〉〈ψi|. Pure states are extremal points as

they cannot be expressed as a sum of other states.
Proof:
Consider ρ = |ψ〉〈ψ| and let |ψ⊥〉 be a vector perpendicular to |ψ〉: 〈ψ⊥|ψ〉 = 0, so

〈ψ⊥|ρ|ψ⊥〉 = 0 = λ 〈ψ⊥ρ1|ψ⊥〉|︸ ︷︷ ︸
≥0

+(1− λ) 〈ψ⊥ρ2|ψ⊥〉|︸ ︷︷ ︸
≥0

(8)

⇒ either λ = 0, 1: ρ1 = ρ, ρ2 = ρ or 〈ψ⊥|ρ1|ψ⊥〉 = 〈ψ⊥|ρ2|ψ⊥〉 = 0 ∀ |ψ〉.

States on the boundary of the convex set of ρ

States ρ at the boundary have at least one zero eigenvalue, since there are states nearby with negative
eigenvalues.
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Example: single qubits

We have a general single-qubit pure state

ρ = 1
2(I + ~r · ~σ) with |~r| = 1, ~σ = (X,Y, Z) (9)

y

x

z

~r

φ

θ

|0〉

|1〉

Figure 2: Bloch-sphere

• pure states have |~r| = 1,

• mixed states have |~r| < 1.

Postulate 1

Associated to any isolated quantum system is a Hilbert space H (complex vector space with an inner
product). The system is completely characterized by the density operator ρ (Tr ρ = 1, ρ ≥ 0).
If the state is ρi with probability pi, then

ρ =
∑
i

piρi,
∑
i

pi = 1 (10)

Postulate 2

The time-evolution of a closed quantum system is described by a unitary transformation U with

ρ(t2) = U(t1, t2)ρ(t1)U†(t1, t2) (11)

Explicitely we have

U(t1, t2) = T exp

−i ∫ t2

t1

ds H(s)
↑

Hamiltonian

 (12)

Postulate 3

Measurements are described by a collection of measurement operators {Mm}
↑

mrefers to the possible measurement outcomes
acting on the state space of the system.
If state before measurement is ρ, the result m is observed with probability p(m) = Tr

(
M†mMmρ

)
. The state

after the measurement is

ρ 7→ MmρM
†
m

Tr
(
M†mMmρ

) , ∑
m

M†mMm = 1 (13)
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Special case: Projective measurement

Let Mm = Pm with P 2
m = Pm = |m〉〈m|. We get P †m = Pm, PmPm′ = Pmδmm′ . This gives∑

m

M†mMm =
∑
m

P †mPm =
∑
m

Pm = 1 (14)

We call an observable M =
∑
m|m〉〈m| =

∑
mmPm. We measure m with probability p(m) = Tr(ρPm)

and the state afterwards becomes ρ 7→ PmρPm

Tr(Pmρ)

POVM: positive operator-valued measurements

We define a POVM by {Em} where Em = M†mMm, which are positive operators (Em ≥ 0).
They obex the completeness relation

∑
mEm = 1. We get p(m) = Tr(Emρ).

Since Em ≥ 0⇒ E†m = Em ⇒ allows spectral decomposition. However, EmEm′ 6=
↑

in general

Emδmm′ .
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2 Tomography: State & gate tomography

3 Quantum algorithm: Trotter

4 Variational quantum algorithms

5 Quantum error mitigation

6 Quantum error correction

7 Literature
• Preskill lecture notes

• Nielsen,Chuang book

• Wilde, Quantum Shannon theory
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