Quantum Algorithms and Error Correction

Peter Orth

May 30, 2023

Contents

1 Basics: ρ, channels, noise 2
1.1 Density operator ρ (Review) 2
2 Tomography: State \& gate tomography 6
3 Quantum algorithm: Trotter 6
4 Variational quantum algorithms 6
5 Quantum error mitigation 6
6 Quantum error correction 6
7 Literature 6

1 Basics: ρ, channels, noise

1.1 Density operator ρ (Review)

A general state of a quantum system is described by the density operator

The $\left|\psi_{i}\right\rangle$ are normalized, so $\left\langle\psi_{i} \mid \psi_{i}\right\rangle=1$, but do not need to be orthogonal.
We write an ensemble of pure states as $\left.\mathcal{E}=\left\{p_{i} \| \psi_{i}\right\rangle\right\}$

Properties of the density operator

The density operator has to fulfill two properties to describe an actual ensemble.
(i) $\operatorname{Tr} \rho=1$.
(ii) ρ is a positive operator, so $\langle\psi| \rho|\psi\rangle \geq 0 \forall|\psi\rangle$.

Proof:

\rightarrow Suppose $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ is a density operator. Then,
(i) We get

$$
\begin{equation*}
\operatorname{Tr} \rho=\sum_{i} \underbrace{\operatorname{Tr}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)}_{\sum_{m}\left\langle m \mid \psi_{i}\right\rangle\left\langle\psi_{i} \mid m\right\rangle=\left\langle\psi_{i} \mid \psi_{i}\right\rangle=1}=\sum_{i} p_{i}=1 \tag{2}
\end{equation*}
$$

(ii) Take a general vector $|\varphi\rangle$, then

$$
\begin{equation*}
\langle\varphi| \rho|\varphi\rangle=\sum_{i} \overbrace{\left\langle\varphi \mid \psi_{i}\right\rangle\left\langle\psi_{i} \mid \varphi\right\rangle}^{=|\langle\psi \mid \varphi\rangle|} \geq 0 \tag{3}
\end{equation*}
$$

\leftarrow : Suppose ρ is a positive operator with $\operatorname{Tr} \rho=1$. Since it is a positive operator, it is also hermitian $\left(\rho^{\dagger}=\rho\right)$ and therefore normal ($\rho^{\dagger} \rho=\rho \rho^{\dagger}$), which allows for spectral decomposition. This means that

$$
\begin{equation*}
\rho=\sum_{i} \underset{\substack{\lambda_{i} \\ \text { orthonormal basis }}}{\left.\lambda_{i}|i| j\right\rangle=\delta_{i j}} \tag{4}
\end{equation*}
$$

Due to $\operatorname{Tr} \rho=1 \Rightarrow \sum_{i} \lambda_{i}=1 \Rightarrow \lambda_{i}$ can be interpreted as probabilities.
$\Rightarrow \rho$ describes an ensemble of states $\left.\mathcal{E}=\left\{\lambda_{i} \equiv p_{i} \| i\right\rangle\right\}$

Purity

A density operator ρ obeys $\operatorname{Tr} \rho^{2}=1$ iff ρ describes a pure state, i.e. $\rho=|\psi\rangle\langle\psi|$
Proof:
\Rightarrow : Suppose $\rho=|\psi\rangle\langle\psi| \Rightarrow \rho^{2}=|\psi\rangle\langle\psi \mid \psi\rangle\langle\psi|=\rho$ and therefore $\operatorname{Tr} \rho^{2}=\operatorname{Tr} \rho=1$.
\Leftarrow : Take a density operator $\rho=\sum_{i} p_{i}|i\rangle\langle i|$ We can write

$$
\begin{equation*}
\operatorname{Tr} \rho^{2}=\sum_{i, j, k} p_{i} p_{j} \underbrace{\langle k \mid i\rangle}_{\delta_{k i}}\langle i \mid i\rangle \underbrace{\langle j \mid k\rangle}_{\delta_{i k}}=\sum_{i} p_{i}^{2} \tag{5}
\end{equation*}
$$

We distinguish the cases
(1) only one $p_{i} \neq 0 \Rightarrow p_{1}=1, p_{2}=\cdots=0 \Rightarrow \operatorname{Tr} \rho^{2}=1$
(2) at least two $p_{i} \neq 0$: from $\sum_{i} p_{i}=1$ we get that

$$
\begin{equation*}
\left(\sum_{i} p_{i}\right)^{2}=1 \Leftrightarrow \sum_{i} p_{i}^{2}+\sum_{i \neq j} p_{i} p_{j}=1 \tag{6}
\end{equation*}
$$

$\Rightarrow \sum_{i} p_{i}^{2}<1$ if at least two $p_{i}>0$ (mixed state).

Theorem: Density operators form a convex set

Given two density operators ρ_{1} and ρ_{2}, the convex linear combination

$$
\begin{equation*}
\rho=\lambda \rho_{1}+(1-\lambda) \rho_{2} \text { with } 0 \leq \lambda \leq 1 \tag{7}
\end{equation*}
$$

is also a density operator

Figure 1: Examples for convex and non-convex sets: convexity means that for any two points, the connecting line is always in the set.

Proof:

(i) $\operatorname{Tr} \rho=\lambda \underbrace{\operatorname{Tr} \rho_{1}}_{=1}+(1-\lambda) \underbrace{\operatorname{Tr} \rho_{2}}_{=1}=1$
(ii) $\langle\varphi| \rho|\varphi\rangle=\lambda \underbrace{\langle\varphi| \rho_{1}|\varphi\rangle}_{\geq 0}+(1-\lambda) \underbrace{\langle\varphi| \rho_{2}|\varphi\rangle}_{\geq 0} \geq 0$

Such a state $\rho=\lambda \rho_{1}+(1-\lambda) \rho_{2}$ is called a mixture of states ρ_{i}.

Extremal points

States in a convex set can be expressed as a convex linear combination of its extremal states.
Here, the extremal states are pure states $\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$, since $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$. Pure states are extremal points as they cannot be expressed as a sum of other states.
Proof:
Consider $\rho=|\psi\rangle\langle\psi|$ and let $\left|\psi_{\perp}\right\rangle$ be a vector perpendicular to $|\psi\rangle:\left\langle\psi_{\perp} \mid \psi\right\rangle=0$, so

$$
\begin{equation*}
\left\langle\psi_{\perp}\right| \rho\left|\psi_{\perp}\right\rangle=0=\lambda \underbrace{\left\langle\psi_{\perp} \rho_{1} \mid \psi_{\perp}\right\rangle \mid}_{\geq 0}+(1-\lambda) \underbrace{\left\langle\psi_{\perp} \rho_{2} \mid \psi_{\perp}\right\rangle \mid}_{\geq 0} \tag{8}
\end{equation*}
$$

\Rightarrow either $\lambda=0,1: \rho_{1}=\rho, \rho_{2}=\rho$ or $\left\langle\psi_{\perp}\right| \rho_{1}\left|\psi_{\perp}\right\rangle=\left\langle\psi_{\perp}\right| \rho_{2}\left|\psi_{\perp}\right\rangle=0 \forall|\psi\rangle$.
States on the boundary of the convex set of ρ
States ρ at the boundary have at least one zero eigenvalue, since there are states nearby with negative eigenvalues.

Example: single qubits

We have a general single-qubit pure state

$$
\begin{equation*}
\rho=\frac{1}{2}(I+\vec{r} \cdot \vec{\sigma}) \text { with }|\vec{r}|=1, \vec{\sigma}=(X, Y, Z) \tag{9}
\end{equation*}
$$

Figure 2: Bloch-sphere

- pure states have $|\vec{r}|=1$,
- mixed states have $|\vec{r}|<1$.

Postulate 1

Associated to any isolated quantum system is a Hilbert space \mathcal{H} (complex vector space with an inner product). The system is completely characterized by the density operator $\rho(\operatorname{Tr} \rho=1, \rho \geq 0)$.
If the state is ρ_{i} with probability p_{i}, then

$$
\begin{equation*}
\rho=\sum_{i} p_{i} \rho_{i}, \sum_{i} p_{i}=1 \tag{10}
\end{equation*}
$$

Postulate 2

The time-evolution of a closed quantum system is described by a unitary transformation U with

$$
\begin{equation*}
\rho\left(t_{2}\right)=U\left(t_{1}, t_{2}\right) \rho\left(t_{1}\right) U^{\dagger}\left(t_{1}, t_{2}\right) \tag{11}
\end{equation*}
$$

Explicitely we have

$$
U\left(t_{1}, t_{2}\right)=T \exp \left[\begin{array}{lcc}
-i \int_{t_{1}}^{t_{2}} & H(s) \tag{12}\\
& \mathrm{d} s & H(s) \\
\text { Hamiltonian }
\end{array}\right]
$$

Postulate 3

Measurements are described by a collection of measurement operators
acting on the state space of the system.
If state before measurement is ρ, the result m is observed with probability $p(m)=\operatorname{Tr}\left(M_{m}^{\dagger} M_{m} \rho\right)$. The state after the measurement is

$$
\begin{equation*}
\rho \mapsto \frac{M_{m} \rho M_{m}^{\dagger}}{\operatorname{Tr}\left(M_{m}^{\dagger} M_{m} \rho\right)}, \sum_{m} M_{m}^{\dagger} M_{m}=\mathbb{1} \tag{13}
\end{equation*}
$$

Let $M_{m}=P_{m}$ with $P_{m}^{2}=P_{m}=|m\rangle\langle m|$. We get $P_{m}^{\dagger}=P_{m}, P_{m} P_{m^{\prime}}=P_{m} \delta_{m m^{\prime}}$. This gives

$$
\begin{equation*}
\sum_{m} M_{m}^{\dagger} M_{m}=\sum_{m} P_{m}^{\dagger} P_{m}=\sum_{m} P_{m}=\mathbb{1} \tag{14}
\end{equation*}
$$

We call an observable $M=\sum_{m}|m\rangle\langle m|=\sum_{m} m P_{m}$. We measure m with probability $p(m)=\operatorname{Tr}\left(\rho P_{m}\right)$ and the state afterwards becomes $\rho \mapsto \frac{P_{m} \rho P_{m}}{\operatorname{Tr}\left(P_{m} \rho\right)}$
POVM: positive operator-valued measurements
We define a POVM by $\left\{E_{m}\right\}$ where $E_{m}=M_{m}^{\dagger} M_{m}$, which are positive operators ($E_{m} \geq 0$).
They obex the completeness relation $\sum_{m} E_{m}=\mathbb{1}$. We get $p(m)=\operatorname{Tr}\left(E_{m} \rho\right)$.
Since $E_{m} \geq 0 \Rightarrow E_{m}^{\dagger}=E_{m} \Rightarrow$ allows spectral decomposition. However, $E_{m} E_{m^{\prime}} \underset{\substack{\uparrow \\ \text { in general }}}{\neq} E_{m} \delta_{m m^{\prime}}$.

2 Tomography: State \& gate tomography
3 Quantum algorithm: Trotter
4 Variational quantum algorithms
5 Quantum error mitigation
6 Quantum error correction
$7 \quad$ Literature

- Preskill lecture notes
- Nielsen, Chuang book
- Wilde, Quantum Shannon theory

