Applied Quantum Information Science SoSe 2023

Lecturer: Dr. Peter P. Orth

Problem Set 1, 100 points Due date: Mo, 6/12/2023, 11:59 PM

1. Projective measurements

(5 + 5 = 10 points)Consider a quantum system in the computational basis state $|0\rangle$, i.e., $Z|0\rangle = |0\rangle$.

- (a) Calculate the probability of obtaining the result +1 for a measurement of $\boldsymbol{v} \cdot \boldsymbol{\sigma}$, where $|\boldsymbol{v}| = 1$.
- (b) What is the state of the system after the measurement if +1 is obtained?
- 2. Expectation values, measurements, and the Bloch sphere $(4 \times 10 = 40 \text{ points})$ The following questions refer to the pure one-qubit state

$$|\psi(\theta,\phi)\rangle = \cos(\theta/2) |0\rangle + e^{i\phi} \sin(\theta/2) |1\rangle ,$$

which represents a point (θ, ϕ) on the Bloch sphere. Assume that we have access to quantum hardware sufficiently advanced to repeatedly prepare the state $|\psi(\theta, \phi)\rangle$ with no errors and perform measurements in X, Y, and Z bases.

- (a) Calculate the expectation values $\langle Z \rangle, \langle X \rangle$, and $\langle Y \rangle$ as functions of θ and ϕ . Using these expressions, calculate $\langle X \rangle^2 + \langle Y \rangle^2 + \langle Z \rangle^2$.
- (b) Calculate the standard deviations $\Delta(X)$ and $\Delta(Z)$ and prove that these expressions satisfy the Heisenberg uncertainty principle $\Delta(X)\Delta(Z) \geq |\langle \psi | [X,Z] | \psi \rangle |/2$ for any (θ, ϕ) . [*Hint*: Square both sides of the Heisenberg uncertainty equation and subtract the right-hand side from both sides—this reduces the problem to showing that something is greater than or equal to 0.]
- (c) One might guess that any two of the expectation values $\langle Z \rangle, \langle X \rangle$, and $\langle Y \rangle$ are sufficient to determine (θ, ϕ) , since we only need to fix two parameters. This is not quite true! Calculate θ and φ in terms of $\langle Z \rangle$ and $\langle X \rangle$ and show that in order to determine φ unambiguously we need to also know the sign of $\langle Y \rangle$.
- (d) The state $|\psi\rangle$ is measured 10⁴ times in the Z basis, and the result +1 is obtained 3847 times. When $|\psi\rangle$ is measured 10⁴ times in the X basis, and the result +1 is obtained 6523 times. A third set of measurements finds that $\langle Y \rangle > 0$. Calculate θ and ϕ based on this series of measurements.

3. POVM measurements

(10 + 10 = 20 points)

Suppose Alice gives Bob a qubit prepared in one of two states, $|\psi_1\rangle = |0\rangle$ or $|\psi_2\rangle =$ $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$. Bob's task is to find out which state he has.

- (a) Argue why Bob cannot determine which state he has with perfect reliability using projective measurements $P_m = |m\rangle \langle m|$, where $|m\rangle$ forms an orthonormal basis.
- (b) It turns out that Bob cannot determine the type of state he has with perfect reliability using any measurement scheme. However, using POVM measurements he can choose three non-orthogonal measurement operators M_m , m = 1, 2, 3, such that he will never misidentify the state. This works by constructing POVM operators in such a way that outcome m=1 never occurs in state $|\psi_1\rangle$ and outcome m=2never occurs in state $|\psi_2\rangle$. By obtaining m=1, he thus knows with certainty that the system was in state $|\psi_2\rangle$, and by obtaining m = 2, he knows it was $|\psi_1\rangle$. If he

obtains m = 3, he cannot tell which state it was, but at least he never misidentifies the state.

Construct the POVM measurement operators M_m and give the probabilities p(m).

4. Reduced density matrix and entropy Consider the so-called Werner state (5+5+10+10=30 points)

$$\rho(\lambda) = \lambda \frac{I}{4} + (1 - \lambda) |\Psi^{-}\rangle \langle \Psi^{-}| ,$$

where $|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$ is one of the four Bell states.

- (a) Explicitly state the density matrix in the computational basis $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$.
- (b) Compute the von-Neumann entropy $S(\rho) = -\text{Tr}\rho \ln \rho$ and plot the result. You can plot the result on the computer and either print it out or make a schematic drawing of the result by hand.
- (c) Determine the von-Neumann entropy of the reduced density matrix $\rho_A = \text{Tr}_B \rho$, where you trace out the second qubit (system *B*).
- (d) One can show that the state is separable (i.e. not entangled) if $1/\text{Tr}(\rho^2) \geq 3$ [see K. Zyczkowski *et al.*, Phys. Rev. A **58**, 883 (1998)]. A state is separable if it can be expressed as a convex linear combination of product states $\rho = \sum_i p_i \rho_i^A \otimes \rho_i^B$, where A, B refer to the two subsystems. Calculate $1/\text{Tr}\rho^2$ and determine the value of λ that separates entangled states $\rho(\lambda)$ from separable ones.