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1. Distance and fidelity of single-qubit states (5 + 5 = 10 points)
Consider two general pure states of a single qubit ¥q(0q, ¢a) = cos & |0) + e'%e sin % |1)
with a =1, 2.

(a) Calculate the trace distance D(|11) , [1)2)) between the two states for general angles.
(b) Calculate the fidelity F'(|11) , |12)) for general angles

2. Schmidt decomposition (10 4+ 10 = 20 points)
Perform the Schmidt decomposition of the pure state

1
V3
(a) Give explicitly the matrices u, d, v that appear in the SVD of a = udv!. Then, state

explictly the Schmidt basis states |w;) 4, and |w;) 5 in terms of the computational
basis states |i) , and |7) 5.

) 00) + [01) + 10}

(b) Determine the von-Neumann entropy S4 = —Trapalnpy of the first qubit after
tracing out the second one.

3. Bell measurements (3 x 10 = 30 points)
In this problem you’ll demonstrate two ways to perform a measurement that distin-
guishes the four Bell states

_ [0y) + (=1)" [1g)
|Bay) = NG ,

where z and y = 0,1 and where 0 =1 and 1 = 0.

(a) One way to distinguish the four Bell states is to apply a unitary circuit U’ that
maps |3zy) to the four computational basis states |zy), i.e.,

U |By) = |zy)

and then perform a standard measurement in the computational basis. This method
is useful on real quantum devices. Find the circuit U’. [Hint: Consider the Bell-
state preparation circuit presented in class.]

Another way to distinguish the Bell states is to find commuting observables M; and
M, (i.e., [My, Ms] = 0) with eigenvalues £1 whose eigenstates are |f5;,). A projective
measurement of these observables would yield unambiguous confirmation of which Bell
state is being measured.

(b) Show that the Pauli strings M} = Z® Z = Z1Z5 and M = X ® X = X; X5 each
have eigenvalues +1 and satisfy [M;, Ma] = 0.

(c) Show that all four |f3,,) are eigenvectors of M; and M, and that no two |f,,) have
the same set of eigenvalues of My and Mo.



4. Operator-sum representations (10 + 10 = 20 points)
In this problem, you will derive the operator-sum representation of a quantum channel
starting from the unitary description of the system coupled to an environment.

(a) Suppose we have a single qubit principal system A, interacting with a single qubit
environment A through the transform

U=FPRI+P®X

where X is the usual Pauli matrix (acting on the environment), and Py = |0) (0,
P, = |1) (1] are projectors (acting on the system). Give the quantum quantum
channel £ for this process, in the operator-sum representation, assuming the envi-
ronment starts in the state |0) .

(b) Just as in the previous question, but now let

X Y
U=—I+—=X
V2 V2

Give the quantum channel for this process, in the operator-sum representation.

5. Gate fidelity (10 + 10 = 20 points)

(a) To measure the closeness of a noisy quantum operation £ to a desired unitary
operation U one defines the gate fidelity

F(U,€) = minyy F (U 4) () (4))

Suppose that the noisy quantum channel of a NOT (or X) gate is given by & =
(1 —p)XpX 4+ pZpZ, find the gate fidelity as a function of p.

(b) Suppose U and V are unitary operators, and £ and F are trace-preserving quan-
tum operations meant to approximate U and V. Letting d(-,-) be any metric on
the space of density matrices satisfying d(UpUT,UcU") = U(p, o) for all density
matrices p and o and unitary U (one example is the angle arccos[F(p, o)]), define
the corresponding error E(U, E) by

E(U, &) = max,d(UpUT, £(p))

and show that E(VU,Fo &) < E(U,&) + E(V,F). Thus, to perform a quantum
computation with high fidelity it suffices to complete each step of the computation
with high fidelity.



