Applied Quantum Information Science SoSe 2023

Lecturer: Dr. Peter P. Orth
Problem Set 2, 100 points
Due date: Wed, 6/28/2023, 11:59 PM

1. Distance and fidelity of single-qubit states
 ($5+5=10$ points)

Consider two general pure states of a single qubit $\psi_{a}\left(\theta_{a}, \phi_{a}\right)=\cos \frac{\theta_{a}}{2}|0\rangle+e^{i \phi_{a}} \sin \frac{\theta_{a}}{2}|1\rangle$ with $a=1,2$.
(a) Calculate the trace distance $D\left(\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle\right)$ between the two states for general angles.
(b) Calculate the fidelity $F\left(\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle\right)$ for general angles
2. Schmidt decomposition
$(10+10=20$ points $)$
Perform the Schmidt decomposition of the pure state

$$
|\psi\rangle=\frac{1}{\sqrt{3}}[|00\rangle+|01\rangle+|10\rangle] .
$$

(a) Give explicitly the matrices u, d, v that appear in the SVD of $a=u d v^{\dagger}$. Then, state explictly the Schmidt basis states $\left|w_{i}\right\rangle_{A}$ and $\left|w_{i}\right\rangle_{B}$ in terms of the computational basis states $|i\rangle_{A}$ and $|i\rangle_{B}$.
(b) Determine the von-Neumann entropy $S_{A}=-\operatorname{Tr}_{A} \rho_{A} \ln \rho_{A}$ of the first qubit after tracing out the second one.
3. Bell measurements
$(3 \times 10=30$ points $)$
In this problem you'll demonstrate two ways to perform a measurement that distinguishes the four Bell states

$$
\left|\beta_{x y}\right\rangle=\frac{|0 y\rangle+(-1)^{x}|1 \bar{y}\rangle}{\sqrt{2}},
$$

where x and $y=0,1$ and where $\overline{0}=1$ and $\overline{1}=0$.
(a) One way to distinguish the four Bell states is to apply a unitary circuit U^{\prime} that maps $\left|\beta_{x y}\right\rangle$ to the four computational basis states $|x y\rangle$, i.e.,

$$
U^{\prime}\left|\beta_{x y}\right\rangle=|x y\rangle
$$

and then perform a standard measurement in the computational basis. This method is useful on real quantum devices. Find the circuit U^{\prime}. [Hint: Consider the Bellstate preparation circuit presented in class.]

Another way to distinguish the Bell states is to find commuting observables M_{1} and M_{2} (i.e., $\left[M_{1}, M_{2}\right]=0$) with eigenvalues ± 1 whose eigenstates are $\left|\beta_{x y}\right\rangle$. A projective measurement of these observables would yield unambiguous confirmation of which Bell state is being measured.
(b) Show that the Pauli strings $M_{1}=Z \otimes Z \equiv Z_{1} Z_{2}$ and $M_{2}=X \otimes X \equiv X_{1} X_{2}$ each have eigenvalues ± 1 and satisfy $\left[M_{1}, M_{2}\right]=0$.
(c) Show that all four $\left|\beta_{x y}\right\rangle$ are eigenvectors of M_{1} and M_{2} and that no two $\left|\beta_{x y}\right\rangle$ have the same set of eigenvalues of M_{1} and M_{2}.
4. Operator-sum representations
$(10+10=20$ points $)$
In this problem, you will derive the operator-sum representation of a quantum channel starting from the unitary description of the system coupled to an environment.
(a) Suppose we have a single qubit principal system A, interacting with a single qubit environment A through the transform

$$
U=P_{0} \otimes I+P_{1} \otimes X
$$

where X is the usual Pauli matrix (acting on the environment), and $P_{0}=|0\rangle\langle 0|$, $P_{1}=|1\rangle\langle 1|$ are projectors (acting on the system). Give the quantum quantum channel \mathcal{E} for this process, in the operator-sum representation, assuming the environment starts in the state $|0\rangle_{E}$.
(b) Just as in the previous question, but now let

$$
U=\frac{X}{\sqrt{2}} \otimes I+\frac{Y}{\sqrt{2}} \otimes X
$$

Give the quantum channel for this process, in the operator-sum representation.

5. Gate fidelity

$$
(10+10=20 \text { points })
$$

(a) To measure the closeness of a noisy quantum operation \mathcal{E} to a desired unitary operation U one defines the gate fidelity

$$
F(U, \mathcal{E})=\min _{|\psi\rangle} F(U|\psi\rangle, \mathcal{E}(|\psi\rangle\langle\psi|))
$$

Suppose that the noisy quantum channel of a NOT (or X) gate is given by $\mathcal{E}=$ $(1-p) X \rho X+p Z \rho Z$, find the gate fidelity as a function of p.
(b) Suppose U and V are unitary operators, and \mathcal{E} and \mathcal{F} are trace-preserving quantum operations meant to approximate U and V. Letting $d(\cdot, \cdot)$ be any metric on the space of density matrices satisfying $d\left(U \rho U^{\dagger}, U \sigma U^{\dagger}\right)=U(\rho, \sigma)$ for all density matrices ρ and σ and unitary U (one example is the angle $\arccos [F(\rho, \sigma)]$), define the corresponding error $E(U, \mathcal{E})$ by

$$
E(U, \mathcal{E})=\max _{\rho} d\left(U \rho U^{\dagger}, \mathcal{E}(\rho)\right)
$$

and show that $E(V U, \mathcal{F} \circ \mathcal{E}) \leq E(U, \mathcal{E})+E(V, \mathcal{F})$. Thus, to perform a quantum computation with high fidelity it suffices to complete each step of the computation with high fidelity.

