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1. Distance and fidelity of single-qubit states (5 + 5 = 10 points)
Consider two general pure states of a single qubit ψa(θa, ϕa) = cos θa2 |0⟩+ eiϕa sin θa

2 |1⟩
with a = 1, 2.

(a) Calculate the trace distance D(|ψ1⟩ , |ψ2⟩) between the two states for general angles.

(b) Calculate the fidelity F (|ψ1⟩ , |ψ2⟩) for general angles

2. Schmidt decomposition (10 + 10 = 20 points)
Perform the Schmidt decomposition of the pure state

|ψ⟩ = 1√
3

[
|00⟩+ |01⟩+ |10⟩

]
.

(a) Give explicitly the matrices u, d, v that appear in the SVD of a = udv†. Then, state
explictly the Schmidt basis states |wi⟩A and |wi⟩B in terms of the computational
basis states |i⟩A and |i⟩B.

(b) Determine the von-Neumann entropy SA = −TrAρA ln ρA of the first qubit after
tracing out the second one.

3. Bell measurements (3× 10 = 30 points)
In this problem you’ll demonstrate two ways to perform a measurement that distin-
guishes the four Bell states

|βxy⟩ =
|0y⟩+ (−1)x |1ȳ⟩√

2
,

where x and y = 0, 1 and where 0̄ = 1 and 1̄ = 0.

(a) One way to distinguish the four Bell states is to apply a unitary circuit U ′ that
maps |βxy⟩ to the four computational basis states |xy⟩, i.e.,

U ′ |βxy⟩ = |xy⟩

and then perform a standard measurement in the computational basis. This method
is useful on real quantum devices. Find the circuit U ′. [Hint : Consider the Bell-
state preparation circuit presented in class.]

Another way to distinguish the Bell states is to find commuting observables M1 and
M2 (i.e., [M1,M2] = 0) with eigenvalues ±1 whose eigenstates are |βxy⟩. A projective
measurement of these observables would yield unambiguous confirmation of which Bell
state is being measured.

(b) Show that the Pauli strings M1 = Z ⊗ Z ≡ Z1Z2 and M2 = X ⊗X ≡ X1X2 each
have eigenvalues ±1 and satisfy [M1,M2] = 0.

(c) Show that all four |βxy⟩ are eigenvectors of M1 and M2 and that no two |βxy⟩ have
the same set of eigenvalues of M1 and M2.



4. Operator-sum representations (10 + 10 = 20 points)
In this problem, you will derive the operator-sum representation of a quantum channel
starting from the unitary description of the system coupled to an environment.

(a) Suppose we have a single qubit principal system A, interacting with a single qubit
environment A through the transform

U = P0 ⊗ I + P1 ⊗X

where X is the usual Pauli matrix (acting on the environment), and P0 = |0⟩ ⟨0|,
P1 = |1⟩ ⟨1| are projectors (acting on the system). Give the quantum quantum
channel E for this process, in the operator-sum representation, assuming the envi-
ronment starts in the state |0⟩E .

(b) Just as in the previous question, but now let

U =
X√
2
⊗ I +

Y√
2
⊗X

Give the quantum channel for this process, in the operator-sum representation.

5. Gate fidelity (10 + 10 = 20 points)

(a) To measure the closeness of a noisy quantum operation E to a desired unitary
operation U one defines the gate fidelity

F (U, E) = min|ψ⟩F
(
U |ψ⟩ , E(|ψ⟩ ⟨ψ|)

)
Suppose that the noisy quantum channel of a NOT (or X) gate is given by E =
(1− p)XρX + pZρZ, find the gate fidelity as a function of p.

(b) Suppose U and V are unitary operators, and E and F are trace-preserving quan-
tum operations meant to approximate U and V . Letting d(·, ·) be any metric on
the space of density matrices satisfying d(UρU †, UσU †) = U(ρ, σ) for all density
matrices ρ and σ and unitary U (one example is the angle arccos[F (ρ, σ)]), define
the corresponding error E(U, E) by

E(U, E) = maxρd(UρU
†, E(ρ))

and show that E(V U,F ◦ E) ≤ E(U, E) + E(V,F). Thus, to perform a quantum
computation with high fidelity it suffices to complete each step of the computation
with high fidelity.


