Applied Quantum Information Science SoSe 2023

Lecturer: Dr. Peter P. Orth

Problem Set 2, 100 points Due date: Wed, 6/28/2023, 11:59 PM

- 1. Distance and fidelity of single-qubit states (5+5=10 points)Consider two general pure states of a single qubit $\psi_a(\theta_a, \phi_a) = \cos \frac{\theta_a}{2} |0\rangle + e^{i\phi_a} \sin \frac{\theta_a}{2} |1\rangle$ with a = 1, 2.
 - (a) Calculate the trace distance $D(|\psi_1\rangle, |\psi_2\rangle)$ between the two states for general angles.
 - (b) Calculate the fidelity $F(|\psi_1\rangle, |\psi_2\rangle)$ for general angles

2. Schmidt decomposition

Perform the Schmidt decomposition of the pure state

$$|\psi\rangle = \frac{1}{\sqrt{3}} \Big[|00\rangle + |01\rangle + |10\rangle \Big] \,.$$

- (a) Give explicitly the matrices u, d, v that appear in the SVD of $a = udv^{\dagger}$. Then, state explicitly the Schmidt basis states $|w_i\rangle_A$ and $|w_i\rangle_B$ in terms of the computational basis states $|i\rangle_A$ and $|i\rangle_B$.
- (b) Determine the von-Neumann entropy $S_A = -\text{Tr}_A \rho_A \ln \rho_A$ of the first qubit after tracing out the second one.

3. Bell measurements

 $(3 \times 10 = 30 \text{ points})$

In this problem you'll demonstrate two ways to perform a measurement that distinguishes the four Bell states

$$\left|\beta_{xy}\right\rangle = \frac{\left|0y\right\rangle + (-1)^{x}\left|1\bar{y}\right\rangle}{\sqrt{2}},$$

where x and y = 0, 1 and where $\overline{0} = 1$ and $\overline{1} = 0$.

(a) One way to distinguish the four Bell states is to apply a unitary circuit U' that maps $|\beta_{xy}\rangle$ to the four computational basis states $|xy\rangle$, i.e.,

$$U' |\beta_{xy}\rangle = |xy\rangle$$

and then perform a standard measurement in the computational basis. This method is useful on real quantum devices. Find the circuit U'. [*Hint*: Consider the Bell-state preparation circuit presented in class.]

Another way to distinguish the Bell states is to find *commuting* observables M_1 and M_2 (i.e., $[M_1, M_2] = 0$) with eigenvalues ± 1 whose eigenstates are $|\beta_{xy}\rangle$. A projective measurement of these observables would yield unambiguous confirmation of which Bell state is being measured.

- (b) Show that the Pauli strings $M_1 = Z \otimes Z \equiv Z_1 Z_2$ and $M_2 = X \otimes X \equiv X_1 X_2$ each have eigenvalues ± 1 and satisfy $[M_1, M_2] = 0$.
- (c) Show that all four $|\beta_{xy}\rangle$ are eigenvectors of M_1 and M_2 and that no two $|\beta_{xy}\rangle$ have the same set of eigenvalues of M_1 and M_2 .

(10 + 10 = 20 points)

4. Operator-sum representations

(10 + 10 = 20 points)

In this problem, you will derive the operator-sum representation of a quantum channel starting from the unitary description of the system coupled to an environment.

(a) Suppose we have a single qubit principal system A, interacting with a single qubit environment A through the transform

$$U = P_0 \otimes I + P_1 \otimes X$$

where X is the usual Pauli matrix (acting on the environment), and $P_0 = |0\rangle \langle 0|$, $P_1 = |1\rangle \langle 1|$ are projectors (acting on the system). Give the quantum quantum channel \mathcal{E} for this process, in the operator-sum representation, assuming the environment starts in the state $|0\rangle_E$.

(b) Just as in the previous question, but now let

$$U = \frac{X}{\sqrt{2}} \otimes I + \frac{Y}{\sqrt{2}} \otimes X$$

Give the quantum channel for this process, in the operator-sum representation.

5. Gate fidelity

(10 + 10 = 20 points)

(a) To measure the closeness of a noisy quantum operation \mathcal{E} to a desired unitary operation U one defines the *gate fidelity*

$$F(U,\mathcal{E}) = \min_{|\psi\rangle} F(U |\psi\rangle, \mathcal{E}(|\psi\rangle \langle \psi|))$$

Suppose that the noisy quantum channel of a NOT (or X) gate is given by $\mathcal{E} = (1-p)X\rho X + pZ\rho Z$, find the gate fidelity as a function of p.

(b) Suppose U and V are unitary operators, and \mathcal{E} and \mathcal{F} are trace-preserving quantum operations meant to approximate U and V. Letting $d(\cdot, \cdot)$ be any metric on the space of density matrices satisfying $d(U\rho U^{\dagger}, U\sigma U^{\dagger}) = U(\rho, \sigma)$ for all density matrices ρ and σ and unitary U (one example is the angle $\arccos[F(\rho, \sigma)]$), define the corresponding error $E(U, \mathcal{E})$ by

$$E(U, \mathcal{E}) = \max_{\rho} d(U\rho U^{\dagger}, \mathcal{E}(\rho))$$

and show that $E(VU, \mathcal{F} \circ \mathcal{E}) \leq E(U, \mathcal{E}) + E(V, \mathcal{F})$. Thus, to perform a quantum computation with high fidelity it suffices to complete each step of the computation with high fidelity.