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1. Process and Pauli transfer matrices (10 + 10 = 20 points)
Suppose a projective measurement is performed on a single qubit in the X basis ± =
1√
2

[
|0⟩ ± |1⟩

]
. In the event that we are ignorant of the result of the measurement, the

density matrix evolves according to the equation

ρ → E(ρ) = |+⟩ ⟨+|ρ|+⟩ ⟨+|+ |−⟩ ⟨−|ρ|−⟩ ⟨−| . (1)

(a) Derive the process matrix χ in the Pauli basis for this quantum operation and check
that the operation is CP.

(b) Derive the Pauli transfer matrix (RE) and calculate |ρ′⟩⟩ = (RE)|ρ⟩⟩ with |ρ⟩⟩ being
the vectorized density matrix ρ = 1

2(I + r · σ) in the Pauli basis. Use your results
to illustrate this transformation E(ρ) on the Bloch sphere by plotting the resulting
set of points r′ = (r′x, r

′
y, r

′
z)

2. Circuit models for amplitude and phase damping (10 + 10 = 20 points)

(a) Show that the circuit in the left figure below models the amplitude damping quan-
tum operation, with sin2(θ/2) = p.

(b) Show that the circuit in the right figure below can be used to model the phase
damping quantum operation, provided θ is chosen appropriately.

Figure 1: (Left) Circuit model for amplitude damping with p = sin2(θ/2). (Right) Circuit
model for phase damping, provided θ is chosen appropriately.

3. TP maps are contractive (10 + 10 = 20 points)

(a) Consider the depolarizing channel introduced E(ρ) = (1−p)ρ+pI/2. For arbitrary
ρ and σ find the trace distance D[E(ρ), E(σ)] using the Bloch representation ρ =
1
2(I + r · σ), and prove explicitly that the map E is strictly contractive, that is,
D[E(ρ), E(σ)] < D(ρ, σ).

(b) Show that the bit flip channel M0 =
√
1− pI, M1 =

√
pX is a contractive channel

D[E(ρ), E(σ)] ≤ D(ρ, σ) but not strictly contractive. Find the set of fixed points
ρ = E(ρ) for the bit flip channel.

4. Quantum state tomography with noisy circuits (8× 5 = 40 points)
In this question you will investigate how hardware imperfections affect ciruit calcula-
tions using a noise model proposed by Kandala et al. in Nature 549, 242 (2017). This

model consists of an amplitude damping channel Ead[ρ] =
∑1

i=0Mad,iρM
†
ad,i and a de-

phasing (or phase damping) channel Epd[ρ] =
∑1

i=0Mpd,iρM
†
pd,i. Both channels act on



the qubit density matrix after each single-qubit or two-qubit gate operation. The Kraus
operators are defined as follows:

Mad,0 =

(
1 0
0

√
1− pad

)
,Mad,1 =

(
0

√
pad

0 0

)
,

Mpd,0 =

(
1 0
0

√
1− ppd

)
,Mpd,1 =

(
0 0
0

√
ppd

)
. (2)

The error rates pad = 1 − e−tg/T1 and ppd = 1 − e−2tg/Tϕ depend on the gate time
tg, qubit relaxation time T1, and dephasing time Tϕ = 2T1T2/(2T1 − T2), where T2 is
the qubit coherence time. Since tg depends on the gate being performed, this noise
model assumes a different error rate for each gate. For simplicity in our analysis, we
assume a uniform single-qubit gate error rate pad,1q = ppd,1q ≡ p1 = 10−4 and a uniform
two-qubit error rate pad,2q = ppd,2q = p2 = 10−2. These values closely match those of
current hardware. Here, we will study a system of two noisy qubits.

(a) Define the combined channel E = Edp ◦Ead for two qubits using qiskit.aer.noise.
You should use the NoiseModel() and Quantum Error() classes, as described in this
tutorial. Start by defining the two quantum channels Ead and Epd for single and two-
qubit gates, respectively, using qiskit.quantum info.operators.channel.kraus.
Note that the two-qubit error channel is a simple tensor product of the one-qubit
model. Finally, define a backend AerSimulator(noise model = your noise model)

that contains two noisy qubits.

(b) Derive the Choi process matrix in both the column vectorized basis
qiskit.quantum info.operators.channel.choi and the Pauli basis
qiskit.quantum info.operators.channel.chi. You can use the tools provided
in qiskit.quantum info.operators.channel.transformations. Show explicitly
that the channel is CP.

(c) Derive the superoperator representation of the quantum channel (for one qubit) in
both the column vectorized and the Pauli basis (which yields the Pauli transfer
matrix). Show that the channel is TP. Is it also unital?

(d) Show explicitly by averaging over the Pauli group P that the Pauli transfer matrix
becomes diagonal under Pauli twirling TP(E) = 1

|P|
∑

P∈P P †EP .

(e) Show explicitly by averaging over the Clifford group Clifn=2 that the Pauli transfer
matrix takes the form of depolarizing noise under Clifford twirling TClifn(E) =

1
|Clifn|

∑
C∈Clifn

C†EC. The Clifford group is generated by {H,S,CNOT}. Study
both the single-qubit and the two-qubit error channels.

(f) Consider a circuit acting on two qubits that prepares the Bell state |β00⟩ ≡ |Φ+⟩.
The goal of this question is to compare the noisy state ρ and the noiseless state ρ0.
First, compute both ρ and ρ0 using an exact statevector simulation. You could use
the superoperators to obtain ρ. Then compute the fidelity and the trace distance
between ρ and ρ0.

(g) Now perform quantum state tomography on the resulting two-qubit final state
using circuits with Nsh circuit executions. Employ the Pauli measurement basis
and the Pauli preparation basis discussed in class on each qubit {|0⟩ , |1⟩ , |+⟩ =
1√
2
[|0⟩+ |1⟩], |−⟩ = 1√

2
[|0⟩+ i |1⟩]}. These states are called |Zp⟩, |Zm⟩, |Xp⟩, |Y p⟩

in qiskit experiments.library.tomography. This defines the matrices A and B
introduced in class. Then measure the matrix P from executing the circuits using
a finite number of shots Nsh = 212. Obtain the Pauli transfer matrix using the
quasi-inverse discussed in class. Does it obey the CPTP constraint?

https://qiskit.org/ecosystem/aer/tutorials/3_building_noise_models.html


(h) Now perform the same experiment using the tools in
qiskit experiments.library.tomography. Compare the results obtained with
the minimal four Pauli basis preparation states PauliPreparationBasis, which
should agree with your results obtained in the previous question, with results ob-
tained with the overcomplete preparation basis Pauli6PreparationBasis.


