(10 + 10 + 10 = 30 points)

Applied Quantum Information Science SoSe 2023

Lecturer: Prof. Dr. Peter P. Orth

Problem Set 4, 100 points Due date: Wed, 7/19/2023, 11:59 PM

1. Quantum simulation

(a) Construct a quantum circuit to simulate the Hamiltonian

$$H = X_1 Y_2 Z_3 \,, \tag{1}$$

performing the unitary transform $U(t) = e^{-iHt}$ for arbitrary t. Note that you do not need to use a Trotter decomposition in this case.

- (b) Implement the circuit using Qiskit and compute the total Z magnetization $M_Z(t) =$ $\frac{1}{3}\sum_{i=1}^{3}\langle Z_i(t)\rangle$ for 50 equally spaced points between t=0 and t=10 at discrete times $t_i = i/5$, i = 0, ..., 50. Start from the initial state $|\psi(0)\rangle = |000\rangle$. Compare a statevector simulation with a simulation using $N_{\rm cir} = 2^{12}$ circuit evaluations at each time point.
- (c) Now consider additional terms in the Hamiltonian $H = \frac{1}{4} \sum_{i=1}^{3} X_i + \frac{1}{4} \sum_{i=1}^{2} Z_i Z_{i+1} + \frac{1}{4} \sum_{i=1}^{3} Z_i Z_{i+1}$ $X_1Y_2Z_3$. Use a Trotter decomposition to compute the total Z magnetization $M_Z(t)$ between t = 0 and t = 10 at discrete times $t_i = i/5$, $i = 0, \ldots, 50$. Perform the simulation for different Trotter step sizes $\Delta t = \{0.005, 0.05, 0.2\}$. Compare a statevector simulation with a simulation using $N_{\rm cir} = 2^{12}$ circuit evaluations at each time point t_i .

2. Pauli group

(5+5=10 points)

The three Pauli matrices and the identity form a group under multiplication for when we multiply two Pauli matrices we get another Pauli matrix up to a phase.

- (a) Explain why the full one-qubit Pauli group \mathcal{P}_1 has 16 elements and explicitly write down all of them.
- (b) Show that $\langle iI, X, Z \rangle$ is a generating set of this group.

3. Stabilizers

 $(4 \times 5 = 20 \text{ points})$ One says that a unitary S stabilizes the state $|\psi\rangle$ if $S|\psi\rangle = |\psi\rangle$. One can use stabilizers to define vectors and subspaces of vectors, which is useful, for example, in quantum error correction.

- (a) Show that the set of stabilizers of $|\psi\rangle$ forms a group (known as the stabilizer group).
- (b) Which states are stabilized by the Pauli matrices X, Y, Z and which by -X, -Y, and -Z?
- (c) Which states are stabilized by the identity I and which by -I?
- (d) What are the stabilizer groups of the computational basis states, $|0\rangle$ and $|1\rangle$?

4. Clifford group

 $(4 \times 10 = 40 \text{ points})$

The Clifford group $\operatorname{Clif}_{n=1}$ of a single qubit is generated by the Hadamard gate H and the phase gate S. For two qubits, one also needs to include the CNOT gate.

- (a) Show how one can implement the gate S^{\dagger} using just H and S gates.
- (b) Show how to implement the three Pauli operators X, Y, and Z using just H and S gates.

- (c) Show that, under conjugation, Clifford gates $C \in \text{Clif}_{n=1}$ map Pauli operators to Pauli operators: $CPC^{\dagger} = P'$ (modulo phase factors), where P and P' are two Pauli operators. In other words, the Clifford group is defined as the group of unitaries that normalize the Pauli group.
- (d) Explain why any circuit composed only of the single qubit Clifford gates maps the set of Pauli eigenstates to the set of Pauli eigenstates.