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In the infrared spectroscopy experiment, you will become acquainted with the
setup and functionality of an FTIR spectrometer as well as its various applications,
and you will also learn how to prepare and handle samples in the experiment. In
five experiments, you will determine the rotational and distortion constants of CO
gas for different states, characterize materials, calculate refractive indices, and in-
vestigate phase transitions.

The fundamentals of the experiment include the setup and components of an
infrared spectrometer as well as the principle of FTIR spectroscopy. The physical
principles of molecular spectroscopy are the harmonic and anharmonic oscillator,
the rigid and nonrigid rotator, as well as the corresponding selection rules on which
the vibrational, rotational and rotational-vibrational spectra are based.

The written preparation should include the following points:

� IR frequency range, IR sources, IR detectors

� Setup and functionality of an FTIR spectrometer

� Energy levels of the quantum mechanical oscillator, the quantum mechanical
rotator and the combination of both

� Prerequisites for IR-active oscillations

� Derivation of equation 2.3 for the calculation of the refractive index from the
oscillations in the spectrum

The following books, for example, can be used for preparation:

� Helmut Günzler und Hans-Ulrich Gremlich, IR-Spektroskopie — Eine Einführ-
ung (Wiley-VCH, Weinheim, 2003)

� Hermann Haken und Hans Christoph Wolf, Molekülphysik und Quanten-
chemie — Einführung in die experimentellen und theoretischen Grundlagen
(Springer: Berlin, 2006)



Chapter 1

Material characterization

1.1 Description of the experiment

As the molecular structure of different substances varies, it is possible to distinguish
these substances using infrared spectroscopy. In addition to the composition from
different atoms, for example, also the change in chain length of alkanes can be
measured. This experiment is divided into two parts. In the first part, you select an
unknown film from the following available film. Based on the measured spectrum
(transmission as a function of the wavenumber ν̄ = 1/λ), you must identify the
material of the selected film.

� Cellulose acetate butyrate

� Cellulose triacetate

� Kapton

� Polycarbonate

� Polystyrene

� Teflon

In the second part, you will measure the spectra of three alkanes with an odd
number of C atoms and of two alkanes with an even number and then you have to
order these alkanes according to the chain length. The chain lengths of the even
alkanes lie between the shortest and longest odd alkane.
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If a molecule has a dipole moment, it interacts with the incident infrared beam as
shown in Fig. 1.1.

Figure 1.1: Interaction of an electromagnetic wave with a dipole [1].

This means that only molecules are infrared-active that first have a dipole moment
and second for which one component of the dipole tensor is parallel to the direction
of the E-field.

An n-alkane is a molecule with the molecular formula CnH2(n+1).

Figure 1.2: Schematic illustration of an alkane (here nonane).

As shown in the figure, an alkane consists of two molecular groups, the methyl
groups (CH3) and the methylene groups (CH2). As you can see, there are two
methyl groups and (n−2) methylene groups in every alkane with C ≥ 2. When the
chain length increases, then also the IR absorption of the CH2 vibrations relative
to that of the CH3 vibrations should increase.
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1.2 Experimental procedure

Part 1:
In the first part, select one of the films and note the number on the film. Measure
a background scan so that you can identify in the final spectrum the vibrations
of the studied material. Now place the film in the sample holder (with the aid
of the supervisor) and measure the spectrum. The supervisor will explain the
experimental settings to you. For preparation you should look up the sum and
structural formulas of the substances find characteristic vibrations with which you
can easily distinguish the substances (see appendix).

Part 2:
You will receive five different alkanes (three alkanes with an odd number of carbon
atoms and two with an even number). Again, first take a background scan. Make
sure that this time you also include the sample cell (with CaF2 windows) in the
beam path, as it belongs to the background. When you fill the alkanes into the
cell, it is sufficient to put a drop on the lower window and then carefully place
the second window on it (ATTENTION!!! THE IR WINDOWS BREAK VERY
EASILY). Make sure that you do not put too much of the liquids on the windows
so that the absorption is not too high and you can still see the individual bands
clearly. Use a new pipette for each alkane and clean the windows with acetone
after each measurement.

1.3 Analysis

Part 1:
Assign the adsorption bands to the corresponding vibrations and thereby deter-
mine the corresponding material.

Part 2:
Fit the CH2 and CH3 stretching vibrations (in the wavenumber range of 3000 cm−1−
2800 cm−1). When fitting, take into account that there are a total of four peaks
in the band of the stretching vibrations, which overlap each other (see Ref. [1]).

Sort the alkanes according to their chain length using the ratio A = intensity(CH2)
intensity(CH3)

.
Then plot the ratio A against the chain length. What do you find?



Chapter 2

Determination of the refractive
index

2.1 Description of the experiment

Figure 2.1: Interferogram of porous silicon: The additional peaks at ± 300 ·λlaser,
which result from the multiple reflections, are clearly visible.

When an electromagnetic wave passes through an object, multiple reflections
occur at the interfaces of this object. These reflections can be recognized both in
the interferogram and in the spectrum.
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Figure 2.2: Transmission spectrum of porous silicon: Oscillations occur in the
spectrum due to multiple reflections at the interfaces.

Figure 2.3: Multiple reflections in a medium.

The phase difference between two beams at perpendicular incidence is given by

δ =
4π

λ
nd (2.1)

where n is the refractive index of the material under investigation and d its thick-
ness [2]. For the transmission coefficient T, i.e., the ratio of the transmitted inten-
sity to the incident intensity, holds [2]:

T =
I

I0
=

(1−R)2

(1−R)2 + 4R sin2 (δ/2)
mit R =

(
n− 1

n+ 1

)2

. (2.2)
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The absolute value of T is at a maximum when the argument of the sine is an
integer multiple of π, i.e. δ = 2πm with m = 0, 1, 2, ... . This results in oscillations
in the spectrum, which can be used to determine the refractive index n:

n =
m

2d∆ν̄
=

λoscill

2d
, (2.3)

m is the number of oscillations in the spectrum and ∆ν̄ is the distance from the
first to the m-th maximum in cm−1 (see Fig. 2.2; λoscill =

m
∆ν̄

is the wavelength of
the oscillations [cm]).
Alternatively, the refractive index can be determined with the aid of the inter-
ference peaks in the interferogram (Fig. 2.1). These are located symmetrically
around the main maximum, the center burst (CB). The distance of the inter-
ference peaks from the main maximum corresponds to λoscill. The spectrometer
indicates the retardation in points x that are a multiple of the laser wavelength
(λlaser=850 nm). Thus, it follows from equation 2.3:

n =
xλlaser

2d
(2.4)

2.2 Experimental procedure

You will get a known film. Determine its thickness and place the film in the sample
holder. Then measure both the spectrum and the interferogram.

2.3 Analysis

Calculate the refractive index from both the spectrum and the interferogram and
compare it with literature values.



Chapter 3

Rotational-vibrational spectrum
of CO

3.1 Description of the experiment

The energy of molecules is the combination of the translational, rotational and
vibrational energy. The rotational energy results in absorption and emission in
the microwave and near IR range and the vibrational energy results in absorption
and emission in almost the entire IR range. This chapter is based on Ref. [1].

3.1.1 Rotation of a rigid, linear molecule

Figure 3.1: Diatomic molecule

A diatomic molecule (as shown in Fig. 3.1) with masses m1 and m2 rotates around
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its center of mass. The two atoms have an equilibrium distance of r0 and the
distance of the center of mass to atom 2 is d. Therefore it holds:

m1(r0 − d) = m2d and hence d =
m1r0

m1 +m2

Assuming that the molecule rotates as a rigid oscillator around the center of mass,
the following holds for the moment of inertia:

Ib = m1(r0 − d)2 +m2d
2

Ib = ur20 with the reduced mass u

The rotational energy for molecules is quantized. The following holds for a rigid,
diatomic molecule:

Erot =
h2J(J + 1)

8π2Ib
(3.1)

or in wave numbers ν

ν =
1

λ
=

Erot

hc
= BJ(J + 1), (3.2)

where J is the rotational quantum number and B = h
8π2Ibc

is the rotational con-
stant.
If electromagnetic radiation hits a molecule so that it begins to rotate, quantum
mechanics provides the selection rule ∆J = ±1. This yields for J = 1:

∆Erot = Bhc[(J + 1)(J + 2)]−BhcJ(J + 1)

∆Erot = 2Bhc(J + 1)

→ νrot = 2B(J + 1)

(3.3)

Since the permitted transitions for absorption are only from J to J + 1, it follows
that the distances between two neighboring absorption lines are always equal to
2B.

3.2 Rotation of a nonrigid, linear molecule

In a nonrigid, diatomic molecule, the bond length increases with increasing rota-
tional frequency due to the centrifugal distortion. The energy must therefore be
corrected by a term:

Erot = BhcJ(J + 1)−Dhc[J(J + 1)]2, (3.4)

whereD is the centrifugal distortion constant. To obtain the appropriate activation
energy for a photon, equation (3.3) is subtracted from itself, but with J substituted
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by J + 1. This yields:

∆Erot

hc
= 2B(J + 1)− 4D(J + 1)3

→ νrot

J + 1︸ ︷︷ ︸
y

= 2B︸︷︷︸
a

− 4D(J + 1)2︸ ︷︷ ︸
bx

(3.5)

Thus, the equation y=a+bx can be used to determine B and D.

3.2.1 Rotational-vibrational spectra

Rigid molecules
In general, rotation and vibration are superimposed in molecules. Rotational-
vibrational bands of gases in the infrared have a complex structure, as a change
in vibrational energy is often superimposed by a change in rotational energy. Let
us assume that these energies are additive. Then, for a linear molecule, the total
energy is given by:

Ev+r = (n+
1

2
)hcν0 +BhcJ(J + 1) (3.6)

Let J ′′ be the rotational quantum number in the vibrational ground state n = 0
and J ′ that in the first excited state n = 1. Subtracting equation (3.5) (with n = 0
and J = J ′′) from itself again as above (with n = 1 and J = J ′), we obtain:

∆Ev+r

hc
= ν0 +B[J ′(J ′ + 1)− J ′′(J ′′ + 1)] (3.7)

A linear, polyatomic molecule has two vibrational rotation bands, a ”parallel
band”, which results from the fact that the change of the dipole moment is par-
allel to the molecular axis, and a ”perpendicular band”, for which the change of
the dipole moment is perpendicular to the molecular axis. The selection rules
∆J = ±1 apply to the parallel band and ∆J = 0,±1 to the perpendicular band.
If ∆J = 0 and J ′ = J ′′ holds, equation 1.6 gives:

∆Ev+r

hc
= Q(cm−1) = ν0 (3.8)

For ∆J = 1 and J ′ = J ′′ + 1 we get:

∆Ev+r

hc
= R(cm−1) = ν0 + 2B(J ′′ + 1) J ′′ = 0, 1, 2, ... (3.9)
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and for ∆J = −1 and J ′ = J ′′ − 1

∆Ev+r

hc
= P (cm−1) = ν0 − 2B(J ′′) J ′′ = 1, 2, 3, ... (3.10)

In the case of stretching vibrations, however, the average intermolecular distance
and hence the moment of inertia increases if the vibrational quantum number
increases. As the so-called rotational constant is proportional to the reciprocal of
the moment of inertia, this quantity has a smaller value in an excited state.
Let B0 be the rotational constant in the ground state and B1 that in the first
excited state, then equation 3.6 must be changed to:

∆Ev+r

hc
= ν0 +B1[J

′(J ′ + 1)]−B0[J
′′(J ′′ + 1)] (3.11)

For the specific branches, this results in:

QJ = ν0 + (B1 −B0)J
2 + (B1 −B0)J J = 0, 1, 2, 3, ...

RJ = ν0 + 2B1 + (3B1 −B0)J + (B1 −B0)J
2 J = 0, 1, 2, 3, ...

PJ = ν0 − (B1 +B0)J + (B1 −B0)J
2 J = 1, 2, 3, ...

(3.12)

With the equations 3.11 we can then calculate B0 and B1:

RJ−1 − PJ+1 = 2B0(2J + 1)

RJ − PJ = 2B1(2J + 1)
(3.13)

Nonrigid molecules
As for rigid molecules, we now also proceed in the same way for nonrigid molecules.
D from equation 3.3 is no longer constant, but has different values for different
states. Thus, equation 3.3 must also be rewritten and this results in:

∆Ev+r

hc
= ν0 +B1[J

′(J ′ + 1)]−D1[J
′(J ′ + 1)]2

−B0[J
′′(J ′′ + 1)] +D0[J

′′(J ′′ + 1)]2
(3.14)

As in the case of rigid molecules, this results in:

RJ−1 − PJ+1

2J + 1
= (2B0 − 3D0)−D0(2J + 1)2

RJ − PJ

2J + 1
= (2B1 − 3D1)−D1(2J + 1)2

(3.15)

These values can be used to make an extrapolation to the oscillation-free state and
to calculate a value Be that indicates the rotational constant at the bottom of the
potential energy curve:

Bn = Be − α

(
n+

1

2

)
(3.16)
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3.2.2 Pure stretching vibrations

The constants can now be used to calculate the frequencies of the pure stretching
vibrations for a state n. For a change to a higher state, the molecule must interact
with a photon of the energy

∆Em =

[
(n+ z) +

1

2

]
hνm −

(
n+

1

2

)
hνm

= zhνm.

Using the equations from the previous sections, this gives:

νn = P (J) + (Bn +B0)J − (Bn −B0)J
2 (3.17)

3.2.3 Morse potential

The potential energy of a molecule depends on the distance of the atoms. This
distance depends on the electrical forces and the nuclear repulsion forces. At large
nuclear distances, both nuclei attract each other, at small distances they repel
each other. This results in an equilibrium position re at which the energy has a
minimum.
For a diatomic molecule, the so-called Morse potential supplies a good approxima-
tion:

V = De(1− e−β(r−re))2 (3.18)

As it is known that ex ≈ 1 + x holds for small x, we get in the vicinity of the
equilibrium state:

V = Deβ
2(r − re)

2 (3.19)

Thus, the Morse potential near re corresponds to that of a harmonic oscillator and
is experimentally accessible as follows: Based on the equation for a pendulum:

ν =
1

2π

√
F

u
F = spring constant, u = reduced mass

and the relation F = 2Deβ
2 = 4π2ν2

eu, we get for β:

β = νe

√
2uπ2

De

(3.20)

νe is the vibration frequency for an infinitesimal amplitude and De is the dissoci-
ation energy (in cm−1):

De =
νe

4xe

, (3.21)

xe is an anharmonicity constant that is related to the wave number as follows:

νn = νen− xeνe(n+ n2) n = 1, 2, 3, ... (3.22)
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3.3 Experimental procedure

Measure the spectrum of CO gas in a frequency range from 4400 cm−1 to 2000 cm−1.
Two absorption regions can be observed. The first contains the peaks of the first
excited state (and of isotopes). In the second region you can see the bands of the
second excited state. Make sure that the pressure in the sample cell is in a range
of 100 − 150 mbar so that you achieve an optimal absorbance (all peak maxima
must still be visible).

3.4 Analysis

The analysis should contain the following points:

� Calculation of rotation and distortion constants (Bn and Dn for n = 0, 1, 2)

� Calculation of moment of inertia and mean bond length (In and rn for n =
0, 1, 2)

� Extrapolation from first and second excited state to the vibrational-free state
and calculation of Be, De, Ie and re

� Calculation of the pure vibration frequency for the first and second excited
state

� Calculation and graphical representation of the Morse potential

� Compare your results with literature values



Chapter 4

Phase transition

4.1 Description of the experiment

In this part, you will study the liquid-solid phase transition of an alkane using the
IR spectrum.

From a thermodynamic point of view, the melting point is given by the intersec-
tion of the Gibbs free energy G of the solid phase with that of the liquid phase [3].
Thus, at the melting temperature Tm the difference between the Gibbs free energy
of the solid and the liquid phase vanishes (see G(T) diagram in Fig. 4.1) [3]. From
the definition of Gibbs free energy:

G = H − T · S (4.1)

(G: Gibbs free energy, H: enthalpy, T: temperature, S: entropy)

it follows that the lower absolute value of the slope in the solid state in comparison
to the liquid state (see Fig. 4.1) can be explained by the lower entropy of the solid
phase state [3]:

∂G

∂T
= −S (4.2)

In the G(T) diagram in Fig. 4.1, we have simplifying assumed that the enthalpy
H and the entropy S are constant in the different phases.
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Figure 4.1: Schematic plot of the Gibbs free energy G as a function of temperature
T (figure based on [3]). For simplification, we have assumed that H and S are
constant in the different phases.

For adsorbates in nanoporous systems, the melting point T adsorbate
m and thus

the intersection of the Gibbs free energy is shifted to lower temperatures [4]. The
curvature of the pore surface (i.e., the pore radius rP ) determines the extent of
the lowering of the melting temperature [4]:

∆Tm = Tm − T adsorbate
m ∝ 1

rP
. (4.3)

4.2 Experimental procedure

First, you measure the alkane in its bulk state. For this, fill an alkane in the
sample cell and seal it with indium (PUT ON GLOVES!). Make sure that the
liquid completely fills the sample cell so that the IR radiation actually passes
through the alkane. Then switch on the temperature controller and the cold head.
The supervisor will help you with this. Measure during cooling and heating in
a temperature interval of ± 10 K above and below the phase transition. Then
repeat the measurement with a nanoporous sample. First make a background
measurement with the sample cell and the porous sample and then fill the porous
sample with the alkane. Then place the sample back into the sample cell. The
transition temperature will now be reduced by 5 K - 10 K, take this into account
when setting the temperature.
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4.3 Analysis

In the analysis, you should first describe what differences you notice in the spectra
of bulk and pore condensate. Then determine the transition temperature in both
states using peak positions, peak widths, peak intensities or splitting of peaks and
compare these with each other as well as with literature values.



Appendix:
Frequencies of characteristic
vibrations

wavenumber range [cm−1] oscillation
400− 1600 CH - vibrations in benzene rings
1600− 2000 anharmonicities of CH vibration in benzene rings
2850− 3000 CH2 - and CH3 - stretching vibrations
3000− 3100 CH - stretching vibrations in benzene rings
680− 780 CF3 - vibrations
1150− 1250 CF2 - and CF3 - stretching vibrations
1210− 1250 O-C-O - stretching vibration
1720− 1790 C=O - stretching vibration
1265− 1380 NC3

1035− 1060 C-O - vibration (alcohol replaced by acetate)
1230− 1260 C-O - vibration (acetate)

≈ 1370 CH3 - vibration (acetate)
1740− 1765 C-C-O - stretching vibration in ring
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