Fakultät 7 – Naturwissenschaftlich-Technische Fakultät II Masterstudiengang Mechatronik

Modul InnoLecture: Sig	nal Processing ir	Biomedicine and Mechatronics			Abk. InnoLecture
Studiensem. 1	Regelstudiensem.	Turnus	Dauer 1 Somostor	SWS 8	ECTS-Punkte
Modulverantwortliche/r Dozent/inn/en		Prof. Joachim Rudolph M. Mboup			
Zuordnung zum Curriculum		Bachelor/Master Mechatronics, Master Comet, Diplom Mechatronik, Bachelor/Diplom Computer und Kommunikation			
Zulassungsvoraussetzungen		None			
Leistungskontrollen / Prüfungen		Continuous control based on practical work			
Lehrveranstaltungen / SWS		Integrated program of lecture course, computer programming, and discussion/documentation			
Arbeitsaufwand		Course and exercises at the university : 45 h Homework : 75 h			
Modulnote		Based on the practical work and oral presentation			

Lernziele/Kompetenzen

Learn and become familiar with new algebraic identification and estimation methods Team work and oral presentation experience Software development experience Documentation edition.

Inhalt

Two applications are considered: the neural spike detection (biomedical signal processing) and fault detection and diagnosis (mechatronics). These are approached via a new algebraic identification framework. The objectives of the course are twofold:

make the students familiar with the new algebraic techniques of identification developped by ALIEN
software development such as the development of a Matlab/Scilab toolbox, for neural spike detection, along with a comprehensive user guide.

Weitere Informationen:

The course is divided into intermediary objectives, to each being assigned some deliverable for the student. For each intermediary step, the class is divided into groups (2 - 5 students) in competition. At the end of each step, the groups are evaluated and a synthesis of the works of the different groups is made. This serves as the starting point of the next step, with a new set of groups of students

Unterrichtssprache: English

Literaturhinweise:

M. Mboup, A Volterra filter for neuronal spike detection, Preprint (2008). Available online at http://hal.inria.fr/inria-00347048/en/

M. Fliess, H. Sira-Ramirez, *An algebraic framework for linear identification*, ESAIM Control Optim. Calc. Variat. **9**, pp. 151-168 (2003).