Naturwissenschaftlich-Technische Fakultät II Master-Studiengang Mechatronik

Modul Nichtlineare Regelung leistungselektronischer Systeme					Abk. NRLS
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1-4	4	einmalig	1 Semester	2	3
Modulverantwortliche/r		Prof. DrIng. habil. J. Rudolph			
Dozent/inn/en		DrIng. A. Gensior			

Zuordnung zum Curriculum Master Mechatronik: Vertiefungen ET, MeS: Erweiterungsbereich

Zulassungsvoraussetzungen Keine formalen Voraussetzungen

Leistungskontrollen / Prüfungen mündliche oder schriftliche Prüfung

Lehrveranstaltungen / SWS Nichtlineare Regelung leistungselektronischer Systeme: 2 SWS

Arbeitsaufwand Vorlesung und integrierte Übung 30 h

Vor- und Nachbereitung 30 h Prüfungsvorbereitung 30 h

Modulnote Note der Prüfung

Lernziele/Kompetenzen

- Vermittlung von Kenntnissen über leistungselektronische Systeme, die aus regelungstechnischer Perspektive besondere Relevanz besitzen
- Verständnis der Modellbildung leistungselektronischer Systeme
- Lösen von Problemstellungen, die aus der Interaktion leistungselektronischer Systeme und daran angeschlossener Lasten (Energieversorgungsnetze, Generatoren) resultieren
- Entwurf von Steuerungen und Regelungen für diese Systeme

Inhalt

Es werden Modelle leistungselektronischer und antriebstechnischer Systeme betrachtet.

- Einführung in die Leistungselektronik: geschalteter Betrieb von Transistoren; Bemerkungen zur Messwerterfassung
- Modellbildung:
 Modelldarstellung als nichtlineare, eingangsaffine Systeme; gemittelte Modelle
- Reglerentwurf:
 Flachheit technisch besonders relevanter Modelle (als Anknüpfung zu bestehenden Lehrveranstaltungen am Lehrstuhl); Rekursiver Entwurf von Reglern ("integrator backstepping"); Gleitregimeregelungen

Weitere Informationen

Unterrichtssprache: deutsch

Veranstaltungsform: zweimal einwöchige Blockveranstaltung