
Flatness-Based Control: Kinematic Car

Tutorial 2: open-loop controller

D. Kastelan
d.kastelan@lsr.uni-saarland.de

Chair of Systems Theory and Control Engineering
Saarland University

In this tutorial, an open-loop controller and a suitable trajectory generator will be implemented
for the kinematic car and included in the existing simulation from Tutorial 1. The open-loop
controller (see notes §1.7, p. 10–14) written in terms of the reference flat output trajectory
t 7→ (y1,r(t), y2,r(t)) is given by

vr(t) = ±
√
ẏ2

1,r(t) + ẏ2
2,r(t) (1.9a)

ϕr(t) = arctan
(
l (ÿ2,r(t)ẏ1,r(t)− ÿ1,r(t)ẏ2,r(t))

v3
r (t)

)
. (1.9b)

Each component of the flat output trajectory may be implemented independently as a polynomial
[0, T ] 3 t 7→ yi(t) =

∑n
j=0 ci,jt

j , i = 1, 2 given values (yi(t), ẏi(t), ÿi(t)), i = 1, 2 at t = 0 and
t = T .

Tasks
1. What minimum polynomial degree n is required such that the system input (v, ϕ) =

(vr(t), ϕr(t)) is smooth?

2. Calculate the polynomial coefficients ci,j , j = 0, . . . , n by numerically inverting an appro-
priate system of equations. Implement this calculation in the constructor for the Matlab
class PolyRef in provided file common/PolyRef.m. Use the polyder function to compute
the polynomial coefficients for the first two time derivatives as well. Save these in proper-
ties p_y, p_dy, p_ddy, respectively. Complete the eval method to evaluate the trajectory
and its first two time derivatives. The plot method may be used to check your results.

3. (∗) The spline interpolation function spapi in Matlab’s curve fitting toolbox may be
used to quickly generate polynomial trajectories. Derivatives thereof may be calculated
using function fnder. Use this approach to compute the trajectory parameters ps_y,
ps_dy, ps_ddy in the PolyRef constructor. Evaluate the trajectory and its first two time
derivatives in eval_spline (see the function spval). Compare your results with those
from the previous task using the plot_spline method.

4. Implement the open-loop (feed-forward) controller from (1.9) in the eval method of the
new Matlab class KinematicCarControl. Consider the positive branch of the square root
function only. The state (y1,r, y2,r, θr) corresponding to the reference trajectory should
also be computed. Make sure that your calculations accept vector-valued variables by
performing element-wise operations (e.g., a.*b or a./b rather than a*b or a/b for multi-
plication and division, respectively). Initialize the controller in the main file and test your
implementation using the references
r1= PolyRef (t0 ,t1 ,y10 ,5 ,1 ,0.5 ,0 ,0);
r2= PolyRef (t0 ,t1 ,y20 ,2 ,0 ,0 ,0 ,0);

1

mailto:d.kastelan@lsr.uni-saarland.de


for t 7→ y1(t) and t 7→ y2(t), respectively and an initial condition (y1(0), y2(0), θ(0)) =
(0, 0, 0).

5. The trajectories in the previous task are compatible with the system’s constraints and
its initial conditions since they are tracked by the ideal kinematic car. Find polynomial
trajectories compatible with the initial conditions (y1(0), y2(0), θ(0)) = (0, 0, π/2).

6. The relations (1.9) are singular for vr(t) = 0. Command a reference trajectory containing
this singularity and describe its effect on the reference and simulated variables. Are the
results as you expect?

7. Consider now the negative branch of the square root function in (1.9). Simulate using the
polynomial references from task 4 and the initial condition (y1(0), y2(0), θ(0)) = (0, 0, π).
What effect does vr(t) < 0 have? Why does θr = arctan ẏ2,r

ẏ1,r
appear to return the “wrong”

value when vr(t) < 0?

2


