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The kinematic car equations discussed up until now are singular in the zero velocity case v = 0:

v =
√
ẏ2

1 + ẏ2
2 (1a)

tanϕ
l

= ÿ2ẏ1 − ÿ1ẏ2
v3 (1b)

ẏ1 = v cos θ (1c)
ẏ2 = v sin θ (1d)

However, as discussed in §3.3.6 (Car: setpoint transitions) of the SR3 lecture notes, this problem
may be treated by considering an explicit parametrization y2 = f(y1), such that (1b) may be
expressed as

tanϕ
l

=
d2f
dy2

1(
1 +

(
df
dy1

)2
)3/2 , (3.39)

which remains well-defined for v = 0. An open-loop controller based on this parametrization is
to be implemented in this tutorial that takes the car from rest at (y1,A, y2,A) with orientation
θA to rest at (y1,B, y2,B) with orientation θB in time t∗.

Tasks
1. Like the discussion on the system’s invariance to being written in terms of the arc length
s, show that the kinematic car dynamic equations (1) are invariant to the transformation

θ 7→ θ − θA =: θ̃ (2a)

y :=
(
y1
y2

)
7→
(

cos θA sin θA
− sin θA cos θA

)
︸ ︷︷ ︸

R(θA)

(
y1 − y1,A
y2 − y2,A

)
=: ỹ (2b)

for some initial planned position yA = (y1,A, y2,A)> ∈ R2 and orientation θA ∈ R. As a
result, a trajectory may be planned in new coordinates θ̃ and ỹ = (ỹ1, ỹ2)> with initial
conditions θ̃A = 0 and ỹA = (0, 0)>.
Solution: Since ẏA = (ẏ1,A, ẏ2,A)> = (0, 0)> and Ṙ(θA) = 0, transformation (2) yields

v =
√

˙̃y2
1 + ˙̃y2

2 (3a)
tanϕ
l

=
¨̃y2 ˙̃y1 − ¨̃y1 ˙̃y2

v3 (3b)

˙̃y1 = v cos θ̃ (3c)
˙̃y2 = v sin θ̃, (3d)
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which is identical to (1), but in the new variables (ỹ1, ỹ2, θ̃). This result demonstrates the
system’s invariance to the transformation (2) and should not be surprising as the kinematic
equations should not depend on the location and orientation of the reference frame (so
long as it is static).

2. Write the inverse transformation (ỹ, θ̃) 7→ (y, θ) for (2).
Solution: Since R(θA) is a rotation matrix (i.e., detR(θA) = +1), R−1(θA) = R>(θA) and
the inverse of (2) with yA = (y1,A, y2,A)> is

θ = θ̃ + θA

y = R>(θA)ỹ + yA.

3. Implement a polynomial trajectory generator x 7→ pz(x) =
∑nz
i=0 az,ix

i to realize rest-to-
rest transitions of the car given boundary conditions pz(x), d

dxpz(x), . . . , d
dx

(nz−1)/2
pz(x) at

x = 0 and x = 1. To compute (along with their appropriate derivatives) are references

t 7→ pỹ1,r

(
t

t∗

)
=: ỹ1,r with nỹ1 = 3,

and
ỹ1,r 7→ pỹ2

(
ỹ1,r
ỹ1,B

)
=: ỹr,2 with nỹ2 = 5.

Use either the approach in §3.3.6 or modify the existing polynomial reference generator
PolyRef.m for this task. Note that pỹ1,r (0) = pỹ2,r (0) = 0 corresponding to ỹA = (0, 0)>
from Task 2 simplify calculations.
Solution: See provided file KinematicCarReference.m that implements the polynomial
coefficient calculations from §3.3.6.

4. Implement an open-loop controller for the car by computing (v, ϕ) using (1a) and (3.39) in
terms of the reference trajectories for ỹ1,r and ỹ2,r. Compute the corresponding reference
variables (y1,r, y2,r, θr) in the system’s original coordinates using the inverse transformation
from Task 3. For this task, use the KinematicCarReference.m from Tutorial 2 or 3 as a
template.

Solution: From ỹ2,r = f(ỹ1,r), ˙̃y2,r = ˙̃y1,r
df

dỹ1,r
⇒ df

dỹ1,r
= ˙̃y2,r

˙̃y1,r
, such that from (3a)

vr = ˙̃y1,r

√√√√1 +
(

˙̃y2,r
˙̃y1,r

)2

= ˙̃y1,r

√√√√1 +
(

df
dỹ1,r

)2

and from (3c)–(3d)

θ̃r = arctan
˙̃y2,r
˙̃y1,r

= arctan df
dỹ1,r

The reference steering angle ϕr follows directly from replacing y1 with ỹ1,r in (3.39).
These expressions along with those for df

dỹ1,r
and d2f

dỹ2
1,r

and the reference system variables
(y1,r, y2,r, θr) using the inverse transformation from Task 3 are calculated in the included
file KinematicCarReference.m.

5. Simulate your results using KinematicCarSim.m from Tutorial 2 as a guide to show that
you may navigate the car from rest for arbitrary (y1,A, y2,A, θA) to a chosen (y1,B, y2,B, θB).
Solution: See provided file KinematicCarSim.m
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6. What restrictions are there on the final configuration (y1,B, y2,B, θB) given the parametriza-
tion y2 = f(y1)?
Solution: For f(ỹ1) to be a smooth single-valued function, the derivative df

dỹ1
must be finite.

As a result, |θ̃| < π
2 and thus |θB − θA| < π

2 . Moreover, then ỹ1,B 6= ỹ1,A = 0 such that
yB 6= R>(θA)(0, ỹ2,B)> + yA.
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