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A brief introduction to a biological problem

Neurophysiologists are trying to record many neurons at once
because:

I They can collect more data per experiment.
I They have reasons to think that neuronal information processing

might involve synchronization among neurons, an hypothesis
dubbed binding by synchronization in the field.



What is binding?

A toy example of a 4 neurons system. One neuron detects triangles,
one detects squares, an other one responds to objects in the upper
visual field, while the last one detects objects in the lower visual field.



The classical example shown in binding talks



Experimental problems of binding studies

I We must be sure that the animal recognizes the complex
stimulus. The animal must therefore be conditioned.

I Working with vertebrates implies then the use of cats or
monkeys.

I We then end up looking for synchronized neurons in networks
made of 107 cells after spending months conditioning the
animal... It is a bit like looking for a needle in a hay stack.

I In vivo recordings in vertebrates are moreover unstable: the heart
must beat which expands the arteries. The tissue is therefore
necessarily moving around the recording electrodes.



An alternative approach: proboscis extension and olfactory
conditioning in insects

Learning curves obtained from honey bees, Apis mellifera, by
Hammer and Menzel [1995].



What are we trying to do?

I An elegant series of experiments by Hammer and Menzel [1998]
suggests that part of the conditioning induced neuronal
modifications occur in the first olfactory relay of the insect: the
antennal lobe.

I The (simple) idea is then to record neuronal responses in the
antennal lobe to mixtures of pure compounds like citral and
octanol in two groups of insects: one conditioned to recognize
the mixture, the other one not.

I To demonstrate synchronization in one group and not in the other
we must record several neurons at once for a long time.



Multi-electrodes in vivo recordings in insects

“From the outside” the neuronal activity appears as brief electrical
impulses: the action potentials or spikes.

Left, the brain and the recording probe with 16 electrodes (bright
spots). Width of one probe shank: 80 µm. Right, 1 sec of raw data
from 4 electrodes. The local extrema are the action potentials.



Why are tetrodes used?

The last 200 ms of the previous figure. With the upper recording site
only it would be difficult to properly classify the two first large spikes
(**). With the lower site only it would be difficult to properly classify
the two spikes labeled by ##.



Other experimental techniques can also be used

A single neuron patch-clamp recording coupled to calcium imaging.
Data from Moritz Paehler and Peter Kloppenburg (Cologne
University).



Data preprocessing: Spike sorting

To exploit our recordings we must first:
I Find out how many neurons are recorded.
I For each neuron estimate some features like the spike waveform,

the discharge statistics, etc.
I For each detected event find the probability with which each

neuron could have generated it.
I Find an automatic method to answer these questions.



Software issues

Spike sorting like any data analysis problem can be made
tremendously easier by a “proper” software choice. We have chosen
to work with R because:

I R is an open-source software running on
basically any computer / OS combination
available.

I It is actively maintained.
I It is an elegant programming language

derived from Lisp.
I It makes trivial parallelization really trivial.
I It is easy to interface with fortran, C or
C++ libraries.



A similar problem

I Think of a room with many seating people who are talking to
each other using a language we do not know.

I Assume that microphones were placed in the room and that their
recordings are given to us.

I Our task is to isolate the discourse of each person.



We have therefore a situation like...



To fulfill our task we could make use of the following features:
I Some people have a low pitch voice while other have a high

pitch one.
I Some people speak loudly while other do not.
I One person can be close to one microphone and far from another

such that its talk is simultaneously recorded by the two with
different amplitudes.

I Some people speak all the time while other just utter a comment
here and there, that is, the discourse statistics changes from
person to person.



Spike sorting as a set of standard statistical problems

Efficient spike sorting requires:

1. Events detection followed by events space dimension reduction.

2. A clustering stage. This can be partially or fully automatized
depending on the data.

3. Events classification.



Detection illustration



The mean event (red) and its standard deviation (black). Sample size:
1421 events detected during 30 s.



“Clean” events

I When many neurons are active in the data set superposed events
are likely to occur.

I Such events are due to the firing of 2 different neurons within
one of our event defining window.

I Ideally we would like to identify and classify superposed events
as such.

I We proceed in 3 steps:
I A “clean” sample made of non-superposed events is first define.
I A model of clean events is estimated on this sample.
I The initial sample is classified and superpositions are identified.



Clean events selection illustration



Dimension Reduction

I The events making the sample you have seen are defined on 3 ms
long windows with data sampled at 15 kHz.

I This implies that 4× 15× 103 × 3× 10−3 = 180 voltage
measurements are used to describe our events.

I In other words our sample space is R180.
I Since it is hard to visualize objects and dangerous to estimate

probability densities in such a space, we usually reduce the
dimension of our sample space.

I We usually use a principal component analysis to this end. We
keep components until the projection of the data on the plane
defined by the last two appears featureless.



Left, 100 spikes (scale bar: 0.5 ms). Right, 1000 spikes projected on
the subspace defined by the first 4 principal components.



High-dimensional data visualization

Before using clustering software on our data, looking at them with a
dynamic visualization software can be enlightening.

I GGobi is an open-source software also
running on Linux, Windows, Mac OS.

I It is actively maintained by Debby Swaine,
Di Cook, Duncan Temple Lang and
Andreas Buja.



The minimal number of clusters present in the data is usually best
estimated with the dynamic display supplemented by “projection
pursuit”.



Semi-automatic and automatic clustering

I We perform semi-automatic clustering with k-means or
bagged clustering.

I With these methods the user has to decide what is the “correct”
number of clusters.

I Automatic clustering is performed by fitting a Gaussian mixture
model to the data using mclust or MixMod.

I These two software provide criteria like the BIC (Bayesian
Information Criterion) or the AIC (An Information Criterion,
introduced by Akaike) to select the number of clusters.

I In practice the BIC works best but gives only an indication.



Clustering results on the previous projection



The action potentials of neuron 3 (left) and 10 (right)

Site 1 Site 2

Site 3 Site 4

Site 1 Site 2

Site 3 Site 4



Spike trains



Studying spike trains per se

I A central working hypothesis of systems neuroscience is that
action potential or spike occurrence times, as opposed to spike
waveforms, are the sole information carrier between brain
regions [Adrian and Zotterman, 1926a,b].

I This hypothesis legitimates and leads to the study of spike trains
per se.

I It also encourages the development of models whose goal is to
predict the probability of occurrence of a spike at a given time,
without necessarily considering the biophysical spike generation
mechanisms.



Spike trains are not Poisson processes

The “raw data” of one bursty neuron of the cockroach antennal lobe.
1 minute of spontaneous activity.



Homogenous Poisson Process
A homogenous Poisson process (HPP) has the following properties:

1. The process is homogenous (or stationary), that is, the
probability of observing n events in (t, t + ∆t) depends only on
∆t and not on t. If N is the random variable describing the
number of events observed during ∆t, we have:

Prob{N = n} = pn(∆t)

2. The process is orderly, that is:

lim
∆t→0

Prob{N > 1}
Prob{N = 1}

= 0

There is at most one event at a time.
3. The process is without memory, that is, if Ti is the random

variable corresponding to the interval between events i and i + 1
then:

Prob{Ti > t + s | Ti > s} = Prob{Ti > t}, ∀i.



HPP properties

We can show Pelat [1996] that a HPP has the following properties:
I There exists a ν > 0 such that:

p(Ti = t) = ν exp(−νt), t ≥ 0,

where p(Ti = t) stands for the probability density function (pdf)
of Ti.

I The number n of events observed in an interval (t, t + ∆t) is the
realization of a Poisson distribution of parameter ν∆t:

Prob{N = n in (t, t + ∆t)} =
(ν∆t)n

n!
exp(−ν∆t)



Spike trains are not Poisson processes (again)

Density estimate (gray) and Poisson process fit (red) for the inter
spike intervals (ISIs) of the previous train. The largest ISI was 3.8 s.



Renewal Processes

When a Poisson process does not apply, the next “simplest” process
we can consider is the renewal process [Perkel et al., 1967] which can
be defined as:

I The ISIs of a renewal process are identically and independently
distributed (IID).

I This type of process is used to describe occurrence times of
failures in “machines” like light bulbs, hard drives, etc.



Spike trains are rarely renewal processes

Some “renewal tests” applied to the previous data. See Pouzat and
Chaffiol [2009a] for details.



A counting process formalism

Probabilists and Statisticians working on series of events whose only
(or most prominent) feature is there occurrence time (car accidents,
earthquakes) use a formalism based on the following three
quantities [Brillinger, 1988].

I Counting Process: For points {tj} randomly scattered along a
line, the counting process N(t) gives the number of points
observed in the interval (0, t]:

N(t) = ]{tj with 0 < tj ≤ t}

where ] stands for the cardinality (number of elements) of a set.



I History: The history,Ht, consists of the variates determined up
to and including time t that are necessary to describe the
evolution of the counting process.

I Conditional Intensity: For the process N and historyHt, the
conditional intensity at time t is defined as:

λ(t | Ht) = lim
h↓0

Prob{event ∈ (t, t + h] | Ht}
h

for small h one has the interpretation:

Prob{event ∈ (t, t + h] | Ht} ≈ λ(t | Ht) h



Meaning of "spike train analysis" in this talk

In this talk “spike train analysis” can be narrowly identified with
conditional intensity estimation:

spike train analysis ≡ get λ̂(t | Ht)

where λ̂ stands for an estimate of λ.



Goodness of fit tests for counting processes

I All goodness of fit tests derive from a mapping or a “time
transformation” of the observed process realization.

I Namely one introduces the integrated conditional intensity :

Λ(t) =

∫ t

0
λ(u | Hu) du

I If Λ is correct it is not hard to show [Brown et al., 2002, Pouzat
and Chaffiol, 2009b] that the process defined by :

{t1, . . . , tn} 7→ {Λ(t1), . . . ,Λ(tn)}

is a Poisson process with rate 1.



Time transformation illustrated

An illustration with simulated data. See Pouzat and Chaffiol [2009b]
for details.



Ogata’s tests

Ogata [1988] introduced several procedures testing the time
transformed event sequence against the uniform Poisson hypothesis:
If a homogeneous Poisson process with rate 1 is observed until its nth
event, then the event times, {Λ(ti)}n

i=1, have a uniform distribution on
(0,Λ(tn)) [Cox and Lewis, 1966]. This uniformity can be tested with
a Kolmogorov test.



First test displayed on the upper left
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Ogata’s tests on the simulated data.



The uk defined, for k > 1, by:

uk = 1− exp (− (Λ(tk)− Λ(tk−1)))

should be IID with a uniform distribution on (0, 1). The empirical
cumulative distribution function (ECDF) of the sorted {uk} can be
compared to the ECDF of the null hypothesis with a Kolmogorov test.
This test is attributed to Berman in [Ogata, 1988] and is the test
proposed and used by [Brown et al., 2002].



Second test displayed on the upper right
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A plot of uk+1 vs uk exhibiting a pattern would be inconsistent with
the homogeneous Poisson process hypothesis. A shortcoming of this
test is that it is only graphical and that it requires a fair number of
events to be meaningful.



Third test displayed on the lower left
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The last test is obtained by splitting the transformed time axis into Kw

non-overlapping windows of the same size w, counting the number of
events in each window and getting a mean count Nw and a variance
Vw computed over the Kw windows. Using a set of increasing window
sizes: {w1, . . . ,wL} a graph of Vw as a function of Nw is build. If the
Poisson process with rate 1 hypothesis is correct the result should fall
on a straight line going through the origin with a unit slope. Pointwise
confidence intervals can be obtained using the normal approximation
of a Poisson distribution.



Fourth test displayed on the lower right
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A new test based on Donsker’s theorem

I We propose an additional test built as follows :

Xj = Λ(tj+1)− Λ(tj)− 1
Sm =

∑m
j=1 Xj

Wn(t) = Sbntc/
√

n

I Donsker’s theorem [Billingsley, 1999, Durrett, 2009] implies
that if Λ is correct then Wn converges weakly to a standard
Wiener process.

I We therefore test if the observed Wn is within the tight
confidence bands obtained by Kendall et al. [2007] for standard
Wiener processes.



Illustration of the proposed test

The proposed test applied to the simulated data. The boundaries have
the form: f (x; a, b) = a + b

√
x.



Where Are We?

I We are now in the fairly unusual situation (from the
neuroscientist’s viewpoint) of knowing how to show that the
model we entertain is wrong without having an explicit
expression for this model...

I We now need a way to find candidates for the CI: λ(t | Ht).



What Do We “Put” inHt?

I It is common to summarize the stationary discharge of a neuron
by its inter-spike interval (ISI) histogram.

I If the latter histogram is not a pure decreasing mono-exponential,
that implies that λ(t | Ht) will at least depend on the elapsed
time since the last spike: t − tl.

I For the real data we saw previously we also expect at least a
dependence on the length of the previous inter spike interval,
isi1. We would then have:

λ(t | Ht) = λ(t − tl, isi1)



What About The Functional Form?

I We haven’t even started yet and we are already considering a
function of at least 2 variables: t − tl, isi1. What about its
functional form?

I Following Brillinger [1988] we discretize our time axis into bins
of size h small enough to have at most 1 spike per bin.

I We are therefore lead to a binomial regression problem.
I For analytical and computational convenience we are going to

use the logistic transform:

log
( λ(t − tl, isi1) h

1− λ(t − tl, isi1) h

)
= η(t − tl, isi1)



The Discretized Data

event time neuron lN.1 i1
14604 0 58.412 1 0.012 0.016
14605 1 58.416 1 0.016 0.016
14606 0 58.420 1 0.004 0.016
14607 1 58.424 1 0.008 0.016
14608 0 58.428 1 0.004 0.008
14609 0 58.432 1 0.008 0.008
14610 1 58.436 1 0.012 0.008
14611 0 58.440 1 0.004 0.012

event is the discretized spike train, time is the bin center time,
neuron is the neuron to whom the spikes in event belong, lN.1 is
t − tl and i1 is isi1.



Smoothing spline

I Since cellular biophysics does not provide much guidance on
how to build η(t − tl, isi1) we have chosen to use the
nonparametric smoothing spline [Wahba, 1990, Green and
Silverman, 1994, Eubank, 1999, Gu, 2002] approach
implemented in the gss (general smoothing spline) package of
Chong Gu for R.

I η(t − tl, isi1) is then uniquely decomposed as :

η(t − tl, isi1) = η∅ + ηl(tt − l) + η1(isi1) + ηl,1(t − tl, isi1)

I Where for instance: ∫
η1(u)du = 0

the integral being evaluated on the definition domain of the
variable isi1.

http://www.stat.purdue.edu/~chong/


Given data:
Yi = η(xi) + εi, i = 1, . . . , n

where xi ∈ [0, 1] and εi ∼ N(0, σ2), we want to find ηρ minimizing:

1
n

n∑
i=1

(Yi − ηρ(xi))
2 + ρ

∫ 1

0

(d2ηρ
dx2

)2dx





It can be shown [Wahba, 1990] that, for a given ρ, the solution of the
functional minimization problem can be expressed on a finite basis:

ηρ(x) =

m−1∑
ν=0

dν φν(x) +

n∑
i=1

ci R1(xi, x)

where the functions, φν(), and R1(xi, ), are known.





What about ρ?



Cross-validation

Ideally we would like ρ such that:

1
n

n∑
i=1

(ηρ(xi)− η(xi))
2

is minimized... but we don’t know the true η. So we choose ρ
minimizing:

V0(ρ) =
1
n

n∑
i=1

(η[i]
ρ (xi)− Yi)

2

where η[k]
ρ is the minimizer of the “delete-one” functional:

1
n

∑
i6=k

(Yi − ηρ(xi))
2 + ρ

∫ 1

0

(d2ηρ
dx2

)2dx







The theory (worked out by Grace Wahba) also gives us
confidence bands



Going back to the real train

I On the next figure the actual spike train you saw previously will
be shown again.

I Three other trains will be shown with it. The second half
(t ≥ 29.5) of each of these trains has been simulated.

I The simulation was performed using the same model obtained by
fitting the first half of the data set.



Which one is the actual train?



The actual train can is in the lower right corner of the previous figure.



Towards the candidate model

I We said previously that we would start with a 2 variables model:

η(t − tl, isi1) = η∅ + ηl(tt − l) + η1(isi1) + ηl,1(t − tl, isi1)

I Since we are using non-parametric method we should not apply
our tests to the data used to fit the model. Otherwise our P-values
will be wrong.

I We therefore systematically split the data set in two parts, fit the
same (structural) model to each part and test it on the other part.



An important detail
The distributions of our variables, t− tl and isi1 are very non-uniform:
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map our variables onto uniform ones.



We therefore map our variables using a smooth version of the ECDF
estimated from the first half of the data set.
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These mapped variables ECDFs are obtained from the whole data set.



Towards the candidate model

I We are going to actually fit 2 models to our data set:
I Model 1:

η(t − tl, isi1) = η∅ + ηl(tt − l) + η1(isi1) + ηl,1(t − tl, isi1)

I Model 2:

η(t − tl, isi1) = η∅ + ηl(tt − l) + η1(isi1)

Model 2 is called an additive model in the literature.

I Clearly Model 1 is more complex than Model 2



Model 1 Fit Early Test Late
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Model 1 Fit Late Test Early
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Model 2 Fit Early Test Late and Fit Late Test Early
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I We now have two candidate models passing our tests. Which one
should we choose?

I We could argue that since Model 2 is the simplest, we should
keep it.

I We could also use the probability (or its log) given by each
model to the data. Let yi be the indicator of the presence (yi = 1)
or absence (yi = 0) of a spike in bin i. Let p1,i and p2,i the
probabilities of having a spike in bin i given by model 1 and 2.
Then,

Prob{Yi = yi | Model k} = pyi
k,i(1− pk,i)

1−yi

We can therefore attach a number (a probability) to our binned
spike train and we get for the log probability, -918.517 with
Model 1 and -925.393 with Model 2.

I These last two numbers are obtained with data (yi) of the second
half and a model (pi) fitted to the first half.



I The simplicity argument would lead us to select Model 2 while
the probability argument would lead us to select Model 1.

I The question becomes: How much confidence can we have is the
difference of 7 found between the two log probabilities?

I We address this question with a “parametric” bootstrap
approach [Davison and Hinkley, 1997].

I Assume Model k fitted to the first half is correct.
I Simulate 500 spike trains corresponding to the second half using

Ogata’s thinning method [Ogata, 1981].
I Compute the log probability with both models.
I Get some summary stats out of these simulations.



Log Probs When Model 1 is True

Red lines correspond to observed values.



Log Prob Difference When Model 1 is True

Red lines correspond to observed value. The mean value of this
difference, 4.78± 0.16, is an estimator of the Kullback-Leibler
divergence between Models 1 and 2.



Log Probs When Model 2 is True

Red lines correspond to observed values.



Log Prob Difference When Model 2 is True

Red lines correspond to observed value. The mean value of this
difference, 6.85± 0.22, is an estimator of the Kullback-Leibler
divergence between Models 2 and 1.



I Our “parametric bootstrap” approach clearly rules out Model 2
as a candidate model.

I We are therefore left with the model including interactions
between its two variables, Model 1:

η(t − tl, isi1) = η∅ + ηl(tt − l) + η1(isi1) + ηl,1(t − tl, isi1)

I The plots of the model terms, ηl(tt − l), η1(isi1) and
ηl,1(t − tl, isi1) were obtained after refitting Model 1 to the full
data set.



The functional forms: Uni-variate terms
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The functional forms: Interaction term
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Intensities of Models 1 and 2
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Conclusions

I We have now a “general” estimation method for the conditional
intensity of real spike trains.

I The method is implemented in the STAR (Spike Train Analysis
with R) package available on CRAN (the Comprehensive R
Archive Network).

I An ongoing systematic study (see the STAR web site) shows:
I Most of our discharges can be explained by models involving

t − tl and isi1.
I “Irregular bursty” discharges require an additive model like

Model 2 here while “Regular bursty” ones require an interaction
term like in Model 1 here.

I Some neurons require functional coupling with other neurons.
I Analysis of odour responses will follow soon.

http://cran.at.r-project.org/web/packages/STAR/index.html
http://cran.at.r-project.org/
http://sites.google.com/site/spiketrainanalysiswithr/
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