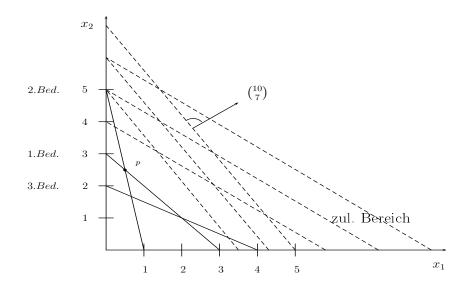
Lineare und Nichtlineare Optimierung

Skript: Dipl.-Math. Petra Schuster-Gentes

Univ.-Prof. Dr. Thomas Schuster



Universität des Saarlandes

Inhaltsverzeichnis

1	Anwendungen und Einteilung von Optimierungsaufgaben	3
2	Lineare Optimierung, 1. Teil: Das Simplexverfahren 2.1 Lineare Programme und geometrische Grundlagen 2.2 Der Simplex – Algorithmus	7 7 15
3	Optimalität und Dualität3.1 Optimalitätsbedingungen3.2 Dualität	23
4	Lineare Optimierung II: Innere – Punkte – Methoden	39
5	Nichtlineare Optimierung I: Nichtrestringierte Probleme 5.1 Abstiegsmethoden 5.2 Trust – Region – Verfahren 5.3 Nichtlineare Ausgleichsprobleme: Gauß– Newton – Verfahren	45 48
6	Nichtlineare Optimierung II: Restringierte Optimierungsaufgaben: 6.1 Penalty – Methoden 6.2 Barriere – Methoden 6.3 Multiplier – Penalty – Methoden 6.4 SQP-Verfahren 6.4.1 Das Newton-Verfahren (reloaded) 6.4.2 Lagrange-Newton-Iteration 6.4.3 Das (lokale) SQP-Verfahren	53 55 56 58 58 62 65
7	Nichtglatte Optimierung 7.1 Lagrange – Dualität 7.2 Das konvexe Subdifferential 7.3 Die Subgradientenmethode 7.4 Schnittebenenmethoden 7.5 Bundle Methoden	73 79 83

Literatur

F.Jarre, J.Stoer: Optimierung, Springer, 2004

C.Geiger, C.Kanzow: Theorie und Numerik restringierter Optimierungsaufgaben, Springer, 2002

Ch. Großmann, J. Terno: Numerik der Optimierung, Teubner, 2. Auflage, 1997

P.Spellucci: Numerische Verfahren der nichtlinearen Optimierung, Birkhäuser, 1993

J.Nocedal, S.J.Wright: Numerical Optimization, 2nd Edition, Springer, 2006

M.Papageorgiou, M.Leibold, M.Buss: Optimierung, 3.Auflage, Springer, 2012

 ${\rm J.M.Borwein,\,A.S.Lewis:}$ Convex Analysis and Nonlinear Optimization, 2nd Edition, Springer, 2010

R.T.Rockafellar: Convex Analysis, Princeton University Press, 1970

Anwendungen und Einteilung von Optimierungsaufgaben

Beispiele für Optimierungsaufgaben:

a) (Schulmathematik)

Finde das Rechteck mit maximalem Flächeninhalt, so dass der Umfang U=10m beträgt.

Also:

$$\max f(x, y) = x \cdot y$$

unter der Nebenbedingung

$$U(x,y) = 2x + 2y = 10$$
.

b) (Analysis II) Lagrange – Multiplikator

Bestimme die lokalen Extrema der Funktion $f(x,y)=4x^2-3xy$ auf dem Einheitskreis.

Das heißt:

unter der Nebenbedingung

$$q(x,y) = x^2 + y^2 - 1 = 0$$
.

Lösung: Für eine Lösung (x^*, y^*) gilt:

$$\nabla f(x^*, y^*) = \lambda \nabla g(x^*, y^*)$$

wobei $\lambda \in \mathbb{R}$ ein Lagrange – Multiplikator ist.

Zu lösen ist also

$$\begin{cases} 8x^* - 3y^* &= \lambda 2x^* \\ -3x^* &= \lambda 2y^* \\ (x^*)^2 + (y^*)^2 - 1 &= 0 \end{cases}$$

Ergebnis: $\lambda = -\frac{1}{2}$ oder $\lambda = \frac{9}{2}$.

i) Zu $\lambda=-\frac{1}{2}$ ergeben sich die Lösungen

$$(x^*, y^*) = \left(\pm \frac{1}{\sqrt{10}}, \pm \frac{3}{\sqrt{10}}\right).$$

ii) Zu $\lambda = \frac{9}{2}$ erhalten wir

4 1 Anwendungen und Einteilung von Optimierungsaufgaben

$$(x^*, y^*) = \left(\mp \frac{3}{\sqrt{10}}, \pm \frac{1}{\sqrt{10}}\right).$$

Im Falle i) ist

$$f(x^*,y^*) = -\frac{1}{2} \quad \Rightarrow \quad \text{lokales Minima auf dem Einheitskreis}$$

Im Falle ii) ist

$$f(x^*, y^*) = \frac{9}{2}$$
 \Rightarrow lokales Maxima auf dem Einheitskreis

c) Angebotsauswertung

Ein Unternehmen will eine betsimmte Menge M eines Gutes einkaufen und holt Angebote von n Lieferfirmen ein, von denen keine die gewünschte Gesamtmenge liefern kann.

Annahme: Anbieter i liefert \max_i Stück zum Preis $f_i(x_i)$ wobei x_i die bestellte Stückzahl ist.

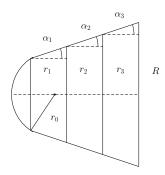
Die zu Lösende Aufgabe ist demnach

$$\min f(x) := \sum_{i=1}^{n} f_i(x_i)$$

u.d.N.
$$\sum_{i=1}^{n} x_i = M$$
 , $0 \le x_i \le \max_i$, $i = 1, ..., n$

d) Design der Nase eines Flugzeugs

Zu entwerfen ist die Nase eines Flugzeuges mit dem Ziel, den Luftwiderstand bei einer vorgesehenen Reisegeschwindigkeit zu minimieren.



Die Flugzeugnase ist bei vorgegebenen Endradius R durch die Radien r_1, r_2, r_3 , die Winkel $\alpha_1, \alpha_2, \alpha_3$ und dem Kugelradius r_0 vollständig festgelegt. Die Aufgabe läßt sich nun formulieren durch

$$\min LW(r_0, r_1, r_2, r_3, \alpha_1, \alpha_2, \alpha_3)$$

u.d.N (i) Volumen
$$(r_0, r_1, ..., \alpha_3) \ge V_0$$

$$(ii)$$
 Länge $(r_0,...,\alpha_3) \leq L_0$

(iii)
$$0 \le r_i \le R$$
, $i = 0, 1, ..., 3$

(iv)
$$0 \le \alpha_3 \le \alpha_2 \le \alpha_1 \le \frac{\pi}{2}$$

e) Tikhonov – Phillips – Regularisierung

Sind X, Y Hilberträume und $A \in L(X, Y)$ kompakt, so definiert

$$\inf_{x \in X} J_{\gamma}(x) = \inf_{x \in X} ||Af - g||_{X}^{2} + \gamma^{2} ||f||_{X}^{2}$$
(1.1)

eine Regularisierung der Operatorgleichung

$$Af = g$$
.

Die Lösung f_{γ} von (1.1) löst auch

$$(A^*A + \gamma I) f_{\gamma} = A^*g$$

und es gilt

$$f_{\gamma} \to A^+ g$$
 , $g \in D(A^+)$, $\gamma \to 0$.

Alle Probleme a) - e) lassen sich in der Form schreiben

$$\begin{cases} \inf/\min f(x) \\ \text{u.d.N} \quad i) \quad g_{i}(x) \leq 0 \quad , \quad i = 1, ..., p \\ ii) \quad h_{j}(x) = 0 \quad , \quad j = p + 1, ..., m \\ iii) \quad x \in \mathcal{B} \end{cases}$$
(1.2)

Dabei sind $f: X \to \mathbb{R}$, $g: X \to \mathbb{R}^p$, $h: X \to \mathbb{R}^{m-p}$ gegebene Funktionen und $\mathcal{B} \subset X$. X ist ein Vektorraum.

Wir nennen (1.2) ein nichtlineares (Optimierungs-) Problem (NLP). Die Menge $\{x \in X : x \text{ erfüllt } i) - iii\}$ ist die Menge der zulässigen Vektoren.

Einteilung von Optimierungsproblemen:

- 1) Nichtrestringiertes Optimierungsproblem: p = m = 0, $\mathcal{B} = X$.
- 2) Lineares Optimierungsproblem: $f, g_1, ..., g_p, h_{p+1}, ..., h_m$ sind affin linear, $\mathcal{B} = \mathbb{R}^n = X$.
- 3) Quadratisches Optimierungsproblem: f ist quatratisch (z.B: $f(x) = \frac{1}{2}x^TQx + c^Tx + b$, $Q \in \mathbb{R}^{n \times n}$ symmetrisch, $c \in \mathbb{R}^n, b \in \mathbb{R}$), $\mathcal{B} = \mathbb{R}^n = X$, $g_1, ..., g_p, h_{p+1}, ..., h_m$ affin linear.
- 4) Konvexes Optimierungsproblem: $f, g_1, ..., g_p$ sind konvexe Funktionen, $h_{p+1}, ..., h_m$ affin linear, $\mathcal{B} = \mathbb{R}^n = X$.
- 5) Glatte, nichtlineare Optimierung: $f, g_1, ... g_p, h_{p+1}, ..., h_m$ sind (zumindest einmal) differenzierbar, $\mathcal{B} = \mathbb{R}^n = X$.
- 6) Diskrete Optimierung: Lineare Optimierung mit $\mathcal{B} \subset \mathbb{Z}^n$ oder $\mathcal{B} \subset \{0,1\}^n$.

Bemerkung:

a) Wegen

$$\inf\{f(x)\} = -\sup\{-f(x)\}\$$

können wir uns auf Minimierungsprobleme beschränken.

b) Ist $\dim X=\infty,$ so spricht man von semi-infiniten Problemen. In dieser Vorlesung ist stehts $X=\mathbb{R}^n.$

Lineare Optimierung, 1. Teil: Das Simplexverfahren

2.1 Lineare Programme und geometrische Grundlagen

Die allgemeinste Form eines linearen Programmes (Optimierungsproblems) ist

$$(LP) \quad \begin{cases} & \min c^T x \\ & \min x \in \mathbb{R}^n : \underline{b} \le Ax \le \overline{b} \\ & l \le x \le u \end{cases}$$

für gegebene Vektoren $c\in\mathbb{R}^n; \underline{b}, \overline{b}\in(\mathbb{R}\cup\{\pm\infty\})^m; l,u\in(\mathbb{R}\cup\{\pm\infty\})^n$ und $A\in\mathbb{R}^{m\times n}$.

Anmerkung: Es sei $x \leq y \Leftrightarrow x_i \leq y_i$, i = 1, ..., n für $x, y \in \mathbb{R}^n$.

Beispiel 2.1 Das Diätproblem:

Ein Bauer habe zwei Nährstoffe für die Zusammensetzung von Kuhfutter zur Auswahl:

- 1) Kraftfutter
- 2) Klee

	Kohlen hydrate	Proteine	Vitamine	Kosten
1 E Kraftfutter	20 E	15 E	5 E	10 Euro
1 E Klee	20~E	3 E	10 E	7 Euro
Bedarf/Tag	60~E	15 E	20~E	

Zu minimieren sind die Futterkosten. Das zugehörige lineare Programm sieht folgendermaßen aus:

$$\begin{aligned} & \min \quad 10x_1 + 7x_2 \\ & \text{u.d.N} \quad 20x_1 + 20x_2 \geq 60 \\ & \quad 15x_1 + 3x_2 \geq 15 \\ & \quad 5x_1 + 10x_2 \geq 20 \\ & \quad x_1 \geq 0 \ , \ x_2 \geq 0 \, , \end{aligned}$$

 $wobei \ x_1 \ die \ Menge \ an \ Kraftfutter \ und \ x_2 \ die \ Menge \ an \ Klee \ bedeutet.$

Es ist also zu lösen

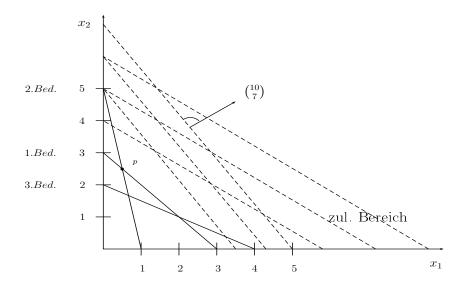
$$\min_{x \in \mathbb{R}^2, Ax \ge \underline{b}} c^T x$$

$$x \ge 0$$

mit

$$A = \begin{pmatrix} 20 & 20 \\ 15 & 3 \\ 5 & 10 \end{pmatrix} , \underline{b} = (60, 15, 20)^T , c = (10, 7)$$

Graphische Lösung: Jede Nebenbedingung definiert eine Halbebene, der Schnitt der 3 Halbebenen mit dem 1. Quadranten ist der zulässige Bereich.



Wir verschieben die Geraden $c^T x = const.$ mit dem Normalenvektor c ohne den zulässigen Bereich zu verlassen in Richtung -c. Wir treffen so auf den Punkt p = (0.5, 2.5), der das Minimierungsproblem löst.

Definition 2.2. Eine Teilmenge \mathbb{R}^n der Form $\{x \in \mathbb{R}^n : Ax \leq b\}$ mit $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ heißt Polyeder. Eine Menge der Gestalt

$$\mathcal{P} := \{ x \in \mathbb{R}^n : Ax = b, x \ge 0 \}$$

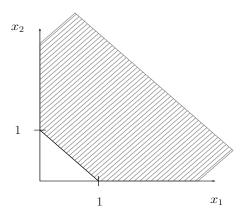
nennen wir Polyeder in Normalform.

Beispiel 2.3 Zum Beispiel ist mit $A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \\ -1 & -1 \end{pmatrix}$ und $b = (0, 0, -1)^T$ die Menge

$$\{ (x_1, x_2)^T \in \mathbb{R}^2 : Ax \le b \}$$

$$= \{ (x_1, x_2)^T \in \mathbb{R}^2 : -x_1 \le 0, -x_2 \le 0, -x_1 - x_2 \le -1 \}$$

ein Polyeder.



Der zulässige Bereich ist in (P) also ein Polyeder in Normalform.

Lemma 2.4. Jedes lineare Programm der Form (LP) läßt sich in Normalform darstellen, also in der Form:

$$(P) \ \left\{ \begin{array}{c} \min c^T x \\ \text{u.d.N}: \ Ax = b \;, \; x \geq 0 \,. \end{array} \right.$$

Beweis: In (LP) sind die Restriktionen in der Gestalt $\underline{b} \leq Ax \leq \overline{b}$, $l \leq x \leq u$

Betrachte die j-te Komponente von $Ax \leq \overline{b}$ also:

$$a_j^T x \leq \bar{b}_j$$

Diese Restriktion läßt sich durch Einführen einer nichtnegativen Schlupfvariablen s_j umformulieren zu:

$$a_j^T x + s_j = \overline{b}_j$$
 , $s_j \ge 0$.

Ebenso ist eine Restriktion der Form

$$a_j^T x \ge \underline{b}_j$$

wegen

$$-a_j^T x \leq -\underline{b}_j$$

zu behandeln.

Alle Variablen x_i , die nicht vorzeichenbeschränkt sind (diese heißen freie Variablen) behandelt man folgendermaßen:

Es gilt:

$$x_i = x_i^+ - x_i^- \quad \text{mit} \quad x_i^+ \ge 0, \ x_i^- \le 0.$$

Definiere dazu $x_i^+ = \max\{x_i, 0\}$, $x_i^- = -\min\{x_i, 0\}$. Die Nebenbedingungen transformieren sich demnach zu

$$\tilde{A}\tilde{x} = \tilde{b}$$
 , $\tilde{x} \ge 0$.

Zu minimieren ist die Größe $\tilde{c}^T\tilde{x}$ mit einem entsprechenden Vektor $\tilde{c}.$

Beispiel 2.5 Die Nebenbedingungen eines linearen Programmes lauten

$$\begin{array}{rcl} x_1 + 2x_2 & \leq 0 \\ x_1 + x_2 + x_3 & \geq 0 \\ 2x_1 + x_3 & = 1 \\ x_1 \geq 0 \; , \; x_2 \geq 0 \end{array}$$

Für die ersten beiden Ungleichungen führen wir Schlupfvariablen ein und die freie Variable x_3 splitten wir auf. Wir gelangen so zu der Darstellung in Normalform:

$$\begin{array}{rcl} x_1+2x_2+s_1&=0\\ -x_1-x_2-x_3^++x_3^-+s_2&=0\\ 2x_1+x_3^+-x_3^-&=1\\ x_1\geq 0\,,\,x_2\geq 0\,,\,x_3^+\geq 0\,,\,x_3^-\geq 0\,,\,\,s_1\geq 0\,,\,s_2\geq 0 \end{array}$$

Beide Systeme sind äquivalent zueinander.

Nachteil: Die Anzahl der Variablen wurde verdoppelt.

Definition 2.6. Sei $\mathcal{P} = \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$ ein Polyeder in Normalform, $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Ein Vektor $x \in \mathcal{P}$ heißt Ecke (Extremalpunkt) von \mathcal{P} , wenn aus

$$x = \lambda x^1 + (1 - \lambda)x^2$$

für $x^1, x^2 \in \mathcal{P}$, $\lambda \in (0,1)$ bereits $x = x^1 = x^2$ folgt. x läßt sich also nicht als echte Konvexkombination von Punkten aus \mathcal{P} darstellen.

Beispiel 2.7 a) Die Punkte (0,1),(1,0) aus dem vorherigen Beispiel sind Extremalpunkte.

b) Alle Randpunkte eines Kreises sind Extremalpunkte.

Charakterisierung der Ecken eines Polyeders?

Satz 2.8 Sei $\mathcal{P} = \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$ ein Polyeder in Normalform mit $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Dann ist $x \in \mathcal{P}$ genau dann eine Ecke von \mathcal{P} , wenn die zu den positiven Komponenten von x zugehörigen Spalten von A linear unabhängig sind, wenn also die Spalten a_i von A mit $i \in \overline{I}(x) := \{i : x_i > 0\}$ linear unabhängig sind.

Beweis: Sei $x \in \mathcal{P}$ eine Ecke.

Annahme: Die Spaltenvektoren $a_i, i \in \overline{I}(x)$, sind linear abhängig.

Dann gibt es $\gamma_i \in \mathbb{R}$ mit

$$\sum_{i \in \overline{I}(x)} \gamma_i a_i = 0$$

und $\gamma_i \neq 0$ für mindestens einen Index $i \in \overline{I}(x)$. Wegen $x_i > 0$ für alle $i \in \overline{I}(x)$ existiert ein $\delta > 0$ mit $x_i \pm \delta \gamma_i \geq 0$ für alle $i \in \overline{I}(x)$.

Es sei nun

$$x_i^1 := \begin{cases} x_i + \delta \gamma_i , & i \in \overline{I}(x) \\ 0 & sonst \end{cases}$$

und

$$x_i^2 := \begin{cases} x_i - \delta \gamma_i , & i \in \overline{I}(x) \\ 0 & sonst \end{cases}$$

Es gilt $x^1 \ge 0$, $x^2 \ge 0$ und

$$Ax^{1} = \sum_{i=1}^{n} x_{i}^{1} a_{i} = \sum_{i \in \overline{I}(x)} (x_{i} + \delta \gamma_{i}) a_{i}$$
$$= b + \delta \sum_{i \in \overline{I}(x)} \gamma_{i} a_{i} = 0$$

sowie $Ax^2 = b$.

Hieraus ersehen wir , dass $x^1, x^2 \in \mathcal{P}$ sind. Offenbar ist aber

$$x = \frac{1}{2}x^1 + \frac{1}{2}x^2$$

Wegen $x^1 \neq x^2$ kann dann x keine Ecke sein (Widerspruch !). Die Annahme war

Es seien nun die Spaltenvektoren $a_i, i \in \overline{I}(x)$ linear unabhängig.

Weiter gelte

$$x = \lambda x^1 + (1 - \lambda)x^2$$

für gewissse $x^1, x^2 \in \mathcal{P}$ und ein $\lambda \in (0, 1)$. Aus $x^1 \geq 0, x^2 \geq 0$ und $x_j = 0, j \notin \overline{I}(x)$ folgt wegen $\lambda \in (0, 1)$ sofort

$$x_j^1 = x_j^2 = 0$$
 , $j \notin \overline{I}(x)$.

Also gilt

$$0 = b - b = Ax^{1} - Ax^{2} = A(x^{1} - x^{2})$$
$$= \sum_{i \in \overline{I}(x)} (x_{i}^{1} - x_{i}^{2})a_{i}$$

und daher auch $x_i^1=x_i^2,\,i\in\overline{I}(x)$, da die $a_i,i\in\overline{I}(x)$ linear unabhängig sind. Folglich ist $x^1=x^2$ und damit $x\in\mathcal{P}$ eine Ecke.

Beispiel 2.9 Der Polyeder $\mathcal{P} = \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$ mit

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \quad , \quad b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

hat den Vektor $x = (1, 2, 0)^T$ als Ecke.

Definition 2.10. Sei $\mathcal{P} := \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$ ein Polyeder in Normalform $mit\ A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Ein zulässiger Punkt $x \in \mathcal{P}$ heißt Basisvektor von \mathcal{P} , wenn eine aus genaum Elementen bestehende Indexmenge I existiert mit $x_i = 0$ für alle $j \notin I$, so dass die Spaltenvektoren $a_i, i \in I$, linear unabhängig sind.

Beispiel 2.11 In dem vorangegangenen Beispiel ist $x = (1,2,0)^T$ auch Basisvektor und $I = \{1, 2\}.$

Achtung! Unter Umständen ist $I \neq \overline{I}(x)$, da wir in Definition 2.10 nicht vorrausgesetzt haben, dass $x_i > 0$ für alle $i \in I$ gilt.

Annahme: O.B.d.A: Rang(A) = m

Satz 2.12 Sei $\mathcal{P} = \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$ ein Polyeder in Normalform mit $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ und Rang(A) = m. Dann ist x genau dann eine Ecke von \mathcal{P} , wenn x ein Basisvektor von \mathcal{P} ist.

Beweis: " \Leftarrow " Ist x ein Basisvektor, so ist nach Satz 2.8 x auch eine Ecke von \mathcal{P} . " \Rightarrow " Sei $x \in \mathcal{P}$ eine Ecke und $\overline{I}(x) = \{i : x_i > 0\}$.

Aus Satz 2.8 folgt, dass die Spaltenvektoren $a_i, i \in \overline{I}(x)$ linear unabhängig sind. Somit gilt $|\overline{I}(x)| \leq m$.

Ist $|\overline{I}(x)| = m$ so setzen wir $I := \overline{I}(x)$ und sind fertig.

Ist $|\overline{I}(x)| < m$, so können wir wegen $\operatorname{Rang}(A) = m$ die Menge $\{a_i, i \in \overline{I}(x)\}$ zu einer m- elementigen Menge $\{a_i, i \in I\}$ mit $\overline{I}(x) \subset I$ ergänzen, die aus linear unabhängigen Vektoren a_i besteht. Somit ist x ein Basisvektor.

Das folgende Resultat zeigt die große Bedeutung der Basisvektoren.

Satz 2.13 (Hauptsatz der linearen Optimierung)

Sei $\mathcal{P} = \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$ ein Polyeder in Normalform mit $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ und Rang(A) = m. Dann gelten:

- a) Ist $P \neq \emptyset$, so besitzt P mindestens einen Basisvektor.
- b) \mathcal{P} hat höchstenes endlich viele Basisvektoren.
- c) Besitzt das lineare Programm

$$\min c^T x \quad \text{u.d.N.} \quad x \in \mathcal{P} \tag{2.1}$$

eine Lösung, so ist auch einer der Basisvektoren von \mathcal{P} Lösung von (2.1).

Beweis: a) Ist $0 \in \mathcal{P}$, so ist x = 0 ein Basisvektor.

Sonst: Sei $x^* \in \mathcal{P}$ ein Vektor mit einer minimalen Anzahl positiver Komponenten. Es ist dann $\overline{I}(x^*) = \{i : x_i^* > 0\} \neq \emptyset$.

Behauptung: Die Menge $\{a_i, i \in \overline{I}(x^*)\}$ ist linear unabhängig.

Ansonsten gibt es γ_i , $i \in \overline{I}(x^*)$ mit

$$\sum_{i \in \overline{I}(x^*)} \gamma_i a_i = 0$$

und $\gamma_i \neq 0$ für ein $i \in \overline{I}(x^*)$.

O.B.d.A:
$$\gamma_i < 0$$
 für ein $i \in \overline{I}(x^*)$.

Dann existiert ein minimales $\overline{\delta} > 0$ mit $x_i(\overline{\delta}) = x_i^* + \overline{\delta}\gamma_i \ge 0$ für alle $i \in \overline{I}(x^*)$ und $x_i(\overline{\delta}) = 0$ für ein $i \in \overline{I}(x^*)$.

Der durch

$$\overline{x}_i = \begin{cases} x_i(\overline{\delta}), & i \in \overline{I}(x^*) \\ 0, & \text{sonst} \end{cases}$$

festgelegte Vektor ist in \mathcal{P} (Beweis wie in Satz 2.8), hat also weniger positive Komponenten wie x^* (\Rightarrow Widerspruch !).

Also ist $\{a_i, i \in \overline{I}(x^*)\}$ linear unabhängig und damit $x^* \in \mathcal{P}$ eine Ecke (Satz 2.8) und nach Satz 2.12 ein Basisvektor.

- b) Da es nur $\binom{n}{m}$ Möglichkeiten m linear unabhän
hige Spalten aus n Stück auszuwählen, kann \mathcal{P} nur endlich viele Basisvektoren haben, die durch Ax = b jeweils einde
utig betimmt sind.
- c) Nach Vorraussetzung ist

$$f^* := \min\{c^T x : x \in \mathcal{P}\}\$$

endlich. Betrachte nun das lineare Programm

$$\min c^T x$$
 u.d.N $x \in \overline{\mathcal{P}}$

 $_{
m mit}$

$$\overline{\mathcal{P}} = \{ x \in \mathbb{R}^n : Ax = b, \ c^T x = f^*, \ x \ge 0 \},$$

 $\overline{\mathcal{P}}$ ist ein Polyeder in Normalform und nach Vorraussetzung nichtleer. Nach Teil a) besitzt $\overline{\mathcal{P}}$ einen Basisvektor x^* , der nach Satz 2.12 eine Ecke ist.

Wir zeigen: x^* ist eine Ecke von \mathcal{P} .

Annahme: x^* ist keine Ecke von \mathcal{P} .

Dann gibt es $x^1, x^2 \in \mathcal{P}$, $x^1 \neq x^2$ mit

$$x^* = \lambda x^1 + (1 - \lambda)x^2$$

für ein $\lambda \in (0,1)$.

Wegen $x^1, x^2 \in \mathcal{P}$ ist

$$f^* \le c^T x^1 \quad , \quad f^* \le c^T x^2$$

Wegen $x^* \in \overline{\mathcal{P}}$ ist $f^* = c^T x^*$ und damit

$$f^* = c^T x^1$$
 , $f^* = c^T x^2$

also $x^1, x^2 \in \overline{\mathcal{P}}$.

Da $x^* \in \overline{\mathcal{P}}$ eine Ecke ist folgt $x^1 = x^2$ (\Rightarrow Widerspruch!) Also ist $x^* \in \mathcal{P}$ eine Ecke und damit Basisvektor von \mathcal{P} . Wegen $x^* \in \overline{\mathcal{P}}$ ist x^* auch Lösung von (2.1).

Anmerkung: Satz 2.13 besagt, dass wir zur Lösung von (2.1) 'nur' alle Ecken des zulässigen Beriches \mathcal{P} durchlaufen müssen.

 $(\rightarrow Simplex-Algorithmus)$

Problem: Der Einheitswürfel im \mathbb{R}^n ,

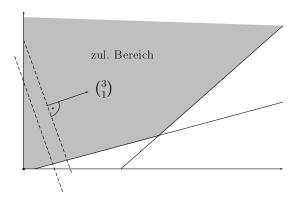
$$\{(x_1, ..., x_n)^T \in \mathbb{R}^n : 0 \le x_i \le 1, i = 1, ..., n\}$$

besitzt 2^n Ecken.

 \Rightarrow enorm zeitaufwändig

Beispiel 2.14 Betrachte das lineare Programm

$$\begin{cases} \min 3x_1 + x_2 \\ \text{u.d.N} \quad x_1 - x_2 \le 3, \, x_1 - 3x_2 \le 1 \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases}$$
 (2.2)



optimale Lösung: $x^* = (0,0)$

In Normalform sieht das Problem so aus:

$$\label{eq:continuous} \begin{array}{ll} \min \; 3x_1+x_2 \\ \text{u.d.N} & x_1-x_2+s_1=3 \;, \;\; x_1-3x_2+s_2=1 \\ & x_1,x_2,s_1,s_2>0 \end{array}$$

$$\tilde{\mathcal{P}} = \{\tilde{A}\tilde{x} = b \; , \; \tilde{x} \geq 0\} \; mit$$

$$\tilde{A} = \begin{pmatrix} 1 - 1 & 1 & 0 \\ 1 - 3 & 0 & 1 \end{pmatrix}$$
 , $\tilde{x} = (x_1, x_2, s_1, s_2)^T$, $b = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

Also: min $\tilde{c}^T \tilde{x}$, $\tilde{c} = (3, 1, 0, 0)$ u.d.N. $\tilde{x} \in \tilde{\mathcal{P}}$ Es gibt maximal $\binom{4}{2} = 6$ Basisvektoren in $\tilde{\mathcal{P}}$, da $Rang(\tilde{A}) = 2$.

Es muß gelten $|I| = Rang(\tilde{A}) = 2$

I	Basisvektor \overline{x}	$\tilde{c}^T x$
$\boxed{\{1,2\}}$	$\overline{x} = (4, 1, 0, 0)^T$	13
$\{1,3\}$	$\overline{x} = (1, 0, 2, 0)^T$	3
$\{1,4\}$	existiert nicht	/
$\{2, 3\}$	existiert nicht	/
$\{2,4\}$	existiert nicht	/
${3,4}$	$\overline{x} = (0, 0, 3, 1)^T$	0

Nach Satz 2.13 ist $\overline{x}=(0,0,3,1)$ eine Lösung des Problems in Normalform. Dieser Lösung entspricht die Lösung x=(0,0) des Ausgangsproblems.

ACHTUNG

- 1) Der Polyeder $\tilde{\mathcal{P}}$ ist ungleich dem zulässigen Bereich des Ausgangsproblems.
- 2) Satz 2.13 ist nichtauf beliebiger Polyeder übertragbar. Der Polyeder

$$\{x \in \mathbb{R}^2 : -x_1 \le 0\}$$

z.B besitzt keine Ecke.

2.2 Der Simplex – Algorithmus

Sei ein lineares Programm in Normalform gegeben, d.h.

$$\min c^T x \qquad \text{u.d.N.} \qquad Ax = b , x > 0 \tag{2.3}$$

mit $c, x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ und sei Rang(A) = m.

Idee: Nutze Satz 2.13 aus: Gehe von einem Basisvektor zum nächsten und zwar so, dass der Wert der Zielfunktion c^Tx beim Übergang abnimmt.

Sei $x \in \mathcal{P} = \{x \in \mathbb{R}^n, Ax = b, x \geq 0\}$ ein Basisvektor und I die zugehörende Indexmenge mit $|I| = m, x_i = 0, j \notin I$ und $\{a_i, i \in I\}$ linear unabhängig.

Sei $J := \{1, ..., n\} \setminus I$. Wir definieren die Basismatrix

$$B := (a_i)_{i \in I} \in \mathbb{R}^{m \times m}$$

und die Nichtbasismatrix

$$N := (a_j)_{j \in J} \in \mathbb{R}^{m \times (n-m)}$$

I und J seien geordnet!

Weiter bezeichne für $z \in \mathbb{R}^n$

$$z_I := (z_i)_{i \in I} \in \mathbb{R}^m , z_J := (z_j)_{j \in J} \in \mathbb{R}^{n-m} .$$

Dann gilt

$$Az = \sum_{i=1}^{n} z_i a_i = \sum_{i \in I} z_i a_i + \sum_{j \in J} z_j a_j$$
$$= Bz_I + Nz_J.$$

Für den Basisvektor $x \in \mathcal{P}$ gilt

$$Bx_I = b$$
 , $x_J = 0$. (2.4)

Es sei nun $z \in \mathcal{P}$ ein beliebiger zulässiger Vektor (nicht unbedingt Basisvektor).

Ziel: Wähle z so, dass $c^T z < c^T x$.

Wegen Az = b gilt

$$Bz_I + Nz_J = b$$

und somit:

$$z_I = B^{-1}b - B^{-1}Nz_I$$

Aus (2.4) und $(B^{-1})^T = (B^T)^{-1}$ folgt dann

$$\begin{cases}
c^{T}z = c_{I}^{T}z_{I} + c_{J}^{T}z_{J} \\
= c_{I}^{T}(B^{-1}b - B^{-1}Nz_{J}) + c_{J}^{T}z_{J} \\
= c_{I}^{T}x_{I} + (c_{J}^{T} - c_{I}^{T}B^{-1}N)z_{J} \\
= c^{T}x + (c_{J} - N^{T}(B^{T})^{-1}c_{I})^{T}z_{J}
\end{cases} (2.5)$$

Definiere:

$$y := (B^T)^{-1} c_I \quad \in \mathbb{R}^m$$

Dann ist y (eindeutige) Lösung von

$$B^T y = c_I. (2.6)$$

Definieren wir weiter:

$$u_j := c_j - a_i^T y , j \in J,$$
 (2.7)

so nimmt (2.5) die Gestalt

$$c^T z = c^T x + \sum_{j \in J} u_j z_j \tag{2.8}$$

an.

Lemma 2.15. (Späteres Abbruchkriterium) Gilt für die durch (2.6), (2.7) definierten Zahlen u_i

$$u_j \ge 0 \quad \text{für alle } j \in J,$$
 (2.9)

so ist der Basisvektor x eine Lösung des linearen Programmes (2.3).

Beweis: Da (2.8) für alle $z \in \mathcal{P}$ gilt, folgt wegen $z_j \geq 0$ für alle $j \in J$ die Behauptung.

Gilt also (2.9), so sind wir fertig.

Sei nun (2.3) nicht erfüllt:

Es sei also

$$u_j < 0$$
 für mindestens ein $j \in J$ (2.10)

Wähle ein $r \in J$ mit $u_r < 0$ und definiere z = z(t) durch

$$\begin{cases} z_r(t) := t > 0 \\ z_j(t) := 0 , j \in J \setminus \{r\} \\ z_i(t) , i \in I \text{ wird noch festgelegt} \end{cases}$$
 (2.11)

Aus (2.8) erhalten wir dann

$$c^{T}z(t) = c^{T}x + tu_{r} < c^{T}x. (2.12)$$

Forderung: $z(t) \in \mathcal{P}$, also z(t) muß zulässig sein.

 $\Rightarrow\,$ Es muß gelten: $Az(t)=b\,$, $\,z(t)\geq 0$ also:

$$1) Az(t) = Bz_I(t) + ta_r = b$$

und somit

$$z_I(t) = B^{-1}(b - ta_r) = x_I - tB^{-1}a_r$$
.

Wir legen also fest:

$$z_I(t) = x_I - td , (2.13)$$

wobei $d \in \mathbb{R}^m$ das Gleichungssystem

$$Bd = a_r (2.14)$$

löst.

Durch (2.11), (2.13) wird ein $z(t) \in \mathbb{R}^n$ mit Az(t) = b konstruiert und $c^T z(t) < c^T x$.

2) Nun ist noch $z(t) \ge 0$ zu realisieren.

Lemma 2.16. Gilt für den durch (2.14) definierten Vektor d

$$d_i \le 0 \qquad \text{für alle } i \in I \,, \tag{2.15}$$

so ist das lineare Programm (2.3) nicht lösbar.

Beweis: Aus (2.11), (2.13) folgt $z(t) \ge 0$ für alle $t \ge 0$, da $z(t) \ge 0$ und wegen $x_I \ge 0$ auch $z_I(t) \ge 0$ gilt.

Folglich ist $z(t) \in \mathcal{P}$ für alle $t \geq 0$.

(2.12) besagt

$$c^T z(t) = c^T x + t u_r$$
 , $t \ge 0$

wobei $u_r < 0$ ist.

Also ist $\inf_{t\geq 0} c^T z(t) = -\infty$ und somit (2.3) nicht lösbar.

Sei nun (2.15) nicht erfüllt:

Es sei also

 $d_i > 0$ für mindestens ein $i \in I$.

Es gilt $z(t) \ge 0$ genau dann, wenn $t \ge 0$ und $x_i - td_i \ge 0$ gilt für alle $i \in I$ mit $d_i > 0$.

Also:

$$0 \le t \le \frac{x_i}{d_i} \quad \text{für alle } i \in I \text{ mit } d_i > 0.$$
 (2.16)

FAZIT: Durch (2.11), (2.13), (2.16) wird ein $z(t) \in \mathcal{P}$ festgelegt mit

$$c^T z(t) < c^T x$$
.

Problem: z(t) ist kein Basisvektor mehr, da z(t) i.a. eine Nullkomponente weniger als x hat $(z_r(t) = t)$.

Idee: Erzwinge das Auftreten einer neuen Nullkomponente durch die Festlegung

$$\hat{t} := \min_{i \in I, d_i > 0} \frac{x_i}{d_i} = \frac{x_s}{d_s} \quad \text{mit } s \in I, d_s > 0.$$
 (2.17)

Es ist dann $\hat{t} \geq 0$ und

$$z_s(\hat{t}) = x_s - \hat{t}d_s = 0$$

Desweiteren ist $x^{neu} := z(\hat{t})$ ein Basisvektor.

Satz 2.17 Sei x ein Basisvektor mit Indexmenge I und $J = \{1, ..., n\} \setminus I$ sowie $B = (a_i)_{i \in I}$. Für die aus (2.6), (2.7) berechneten Zahlen u_j sei

$$u_i < 0$$
 für mindestens ein $j \in J$.

Für den zu einem r mit $u_r < 0$ aus (2.14) berechneten Vektor $d \in \mathbb{R}^n$ sei

$$d_i > 0$$
 für mindestens ein $i \in I$.

Werden $\hat{t} \geq 0$ und ein $s \in I$ nach (2.17) bestimmt, so gilt für $x^{neu} \in \mathbb{R}^n$ mit

$$x_i^{neu} := \begin{cases} x_i - \hat{t}d_i, & i \in I, i \neq s \\ \hat{t}, & i = r \\ 0 & sonst \end{cases}$$

folgendes:

a) $x^{neu} \in \mathcal{P}$ ist ein Basisvektor mit Indexmenge $I^{neu} = (I \cup \{r\}) \setminus \{s\}$,

b)
$$c^T x^{neu} \leq c^T x$$
,

Beweis: b) ist klar, ebenso wie $x^{neu} \in \mathcal{P}$ nach Konstruktion ($\hat{t} = 0$ möglich!) Zu zeigen: x^{neu} ist ein Basisvektor.

Es ist

$$x_i^{neu} = 0$$
 für alle $i \notin I^{neu}$

klar nach Definition.

Es bleibt zu zeigen: a_i , $i \in I^{neu}$ linear unabhängig.

Sei

$$\sum_{i \in I^{neu}} \gamma_i a_i = \sum_{i \in I, i \neq s} \gamma_i a_i + \gamma_r a_r = 0 \quad \text{mit } \gamma_i \in \mathbb{R}.$$

Es gilt

$$0 = \sum_{i \in I, i \neq s} \gamma_i a_i + \gamma_r a_r$$

$$= \sum_{i \in I, i \neq s} \gamma_i a_i + \gamma_r Bd$$

$$= \sum_{i \in I, i \neq s} \gamma_i a_i + \gamma_r \left(\sum_{i \in I} d_i a_i\right)$$

$$= \sum_{i \in I, i \neq s} (\gamma_i + \gamma_r d_i) a_i + \gamma_r d_s a_s.$$

Da x ein Basisvektor mit Indexmenge I ist, gilt

$$\gamma_i + \gamma_r d_i = 0$$
 für alle $i \in I$, $i \neq s$ und $\gamma_r d_s = 0$.

Wegen $d_s > 0$ gilt $\gamma_r = 0$ und somit

$$\gamma_i = 0$$
 für alle $i \in I, i \neq s$,

also

$$\gamma_i = 0$$
 für alle $i \in I^{neu}$,

das heißt $(a_i)_{i \in I^{neu}}$ sind linear unabhängig.

Bemerkung: In (2.17) kann passieren, dass $\hat{t} = 0$ ist, falls $x_i = 0$ für ein $i \in I$ gilt. In diesem Fall wäre $c^T x^{neu} = c^T x$. Ein Basisvektor $x \in \mathcal{P}$ mit $x_i = 0$ für ein $i \in I$ heißt entartet.

Korollar 2.18 Ist x ein nichtentarteter Basisvektor, so gilt sogar

$$c^T x^{neu} < c^T x$$
.

Beispiel 2.19 Seien

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} , b = \begin{pmatrix} 4 \\ 6 \\ 2 \\ 3 \end{pmatrix} , c = (-2, -3, -4, 0, 0, 0, 0)^T.$$

Der Vektor $x = (2,0,0,2,6,0,3)^T$ ist ein Basisvektor mit Indexmenge

$$I = \{1, 4, 5, 7\}$$
, also $J = \{2, 3, 6\}$,

und somit

$$B = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} , \quad c^T x = -4,$$

$$x_I = (2, 2, 6, 3)$$
 , $c_I = (-2, 0, 0, 0)^T$.

Die Lösung von $B^T y = c_I$ lautet $y = (0, 0, -2, 0)^T$, woraus sich $u_2 = c_2 - a_2^T y = -3$, $u_3 = -4$, $u_6 = 2$ ergibt.

Wähle $r = 3 \quad (u_3 < 0)$.

Die Lösung von $Bd = a_3$ ist $d = (0, 1, 1, 1)^T$.

Weiter ist

$$\min_{i \in I, d_i > 0} \frac{x_i}{d_i} = \min \left\{ \frac{x_4}{d_4}, \frac{x_5}{d_5}, \frac{x_7}{d_7} \right\}$$

$$= \min\{2, 6, 3\} = 2 =: \hat{t}$$

und somit s = 4.

 $Damit\ wird$

$$I^{neu} = \{1, \underline{3}, 5, 7\}$$
 , $x^{neu} = (2, 0, 2, 0, 4, 0, 1)^T$

und

$$c^T x^{neu} = -12 < -4 = c^T x$$
.

ALGORITHMUS: (Simplex-Verfahren)

(S.0) Wähle einen Basisvektor x^0 von $\mathcal{P} = \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$ mit Indexmenge $I_0, |I_0| = m$, setze $J_0 = \{1, ..., n\} \setminus I_0$. Definiere

$$B_0 = (a_i)_{i \in I_0}$$

und k := 0.

(S.1) Berechne die Lösung $y^k \in \mathbb{R}^m$ von

$$B_k^T y = c_{I_k}$$
.

(S.2) Berechne

$$u_j^k := c_j - a_j^T y^k \quad , \quad j \in J_k.$$

- (S.3) Ist $u_j^k \ge 0$ für alle $j \in J_k \implies \text{STOP}$ (Lemma 2.15)
- (S.4) Wähle $r_k \in J_k$ mit $u_{r_k}^k < 0$.
- (S.5) Berechne die Lösung $d^k \in \mathbb{R}^m$ von

$$B_k d^k = a_{r_k}$$
.

- (S.6) Ist $d_i^k \leq 0$ für alle $i \in I_k \implies \text{STOP}$ (Lemma 2.16)
- (S.7) Bestimme $t_k \geq 0$ und $s_k \in I_k$ mit $d_{s_k}^k > 0$ aus

$$t_k := \min_{i \in I_k, d_i^k > 0} \frac{x_i^k}{d_i^k} = \frac{x_{s_k}^k}{d_{s_k}^k}$$

und setze

$$x_i^{k+1} = \begin{cases} x_i^k - t_k d_i^k , & i \in I_k, i \neq s_k \\ t_k , & i = r_k \\ 0 & sonst \end{cases}$$

$$I_{k+1} := (I_k \cup \{r_k\}) \setminus \{s_k\}$$

$$J_{k+1} := \{1, ..., n\} \setminus I_{k+1}$$

$$B_{k+1} := (a_i)_{i \in I_{k+1}}$$

Setze $k \leftarrow k+1$ und gehe zu (S.1).

Satz 2.20 a) Die vom Simplex-Verfahren erzeugten Vektoren x^k sind Basisvektoren von \mathcal{P} und es gilt

 $c^T x^{k+1} \, \leq \, c^T x^k \qquad , \quad k=0,1,2,\dots$

- b) Bricht das Verfahren in (S.3) ab, so ist x^k eine Lösung von (2.3).
- c) Bricht das Verfahren in (S.6) ab, so ist (2.3) nicht lösbar.
- d) Sind alle im Simplex-Verfahren auftretenden Basisvektoren x^k nicht entartet, so bricht das Verfahren nach endlich vielen Iterationen ab und zwar mit einer der Entscheidungen in b) oder c).

Beweis: Es bleibt nur d) zu zeigen.

Nach Korollar 2.18 ist

$$c^T x^{k+1} < c^T x^k$$
 , $k = 0, 1, ...$

Ein Basisvektor x^k taucht folglich nicht zweimal auf. Nach Satz 2.13 gibt es jedoch nur endlich viele Basisvektoren. Also muß das Verfahren abbrechen.

Bemerkung: a) Bei der Durchführung des Simplex-Algorithmus können sogenannte Zyklen auftauchen, d.h. der Fall

$$x^k = x^{k+1} = \dots = x^{k+p}$$
 , $p > 2$

und

$$I_k \rightarrow I_{k+1} \rightarrow \dots \rightarrow I_{k+p} = I_k$$
.

In diesem Fall bricht das Verfahren nicht ab. Durch folgende Zusatzforderungen können Zyklen vermieden werden:

- (S.4') Wähle r_k als den kleinsten Index $j \in J_k$ mit $u_j^k < 0$.
- (S.7') Bestimme $t_k \geq 0$ und s_k als den kleinsten Index $s_k \in I_k$ mit $d_i^k > 0$ aus

$$t_k = \min_{i \in I_k, d_i^k > 0} \frac{x_i^k}{d_i^k} = \frac{x_{s_k}^k}{d_{s_k}^k}$$

(Zusatzregel von Bland)

b) Die Komplexität des Simplex-Verfahrens ist schlimmstenfalls exponentiell in n (Beispiel von Klee und Minty).

Viele Beispiele haben jedoch gezeigt, dass die Anzahl der Simplex-Schritte eher polynomial mit n und m wächst.

c) Ein Start-Basisvektor x^0 zu finden ist nicht trivial. Oft wird in einem ersten Schritt (Phase I) das Simplex-Verfahren auf ein Hilfsproblem angewendet, um x^0 zu bekommen.

Satz 2.21 In (2.3) sei $b \ge 0$. Dann gilt für das lineare Programm

$$\min e^T z$$
 u.d.N. $Ax + z = b$, $x, z \ge 0$ (2.18)

 $mit\ e = (1, 1, ..., 1)^T \in \mathbb{R}^m$ folgendes:

- a) Der Vektor $\binom{x}{z} = \binom{0}{b}$ ist ein Basisvektor für (2.18) mit $I = \{n+1, n+2, ..., n+m\}$.
- b) Sei $\binom{x^*}{z^*} \in \mathbb{R}^{n+m}$ ein optimaler Basisvektor für (2.18). Ist $z^* \neq 0$, so besitzt (2.3) keinen zulässigen Punkt. Ist $z^* = 0$ und Rang(A) = m, so ist $x^* \in \mathbb{R}^n$ ein Basisvektor für (2.3).

Beweis: als Übung

Anmerkung: Man kann beweisen, dass das lineare Programm (2.18) stets lösbar ist.

Optimalität und Dualität

3.1 Optimalitätsbedingungen

Definition 3.1. Eine Teilmenge $X \subseteq \mathbb{R}^n$ ist ein Kegel (cone), falls $\lambda x \in X$ gilt für alle $x \in X$ und $\lambda > 0$.

Sind $a_1, ..., a_m \in \mathbb{R}^n$, so ist

cone
$$\{a_1, ..., a_m\} := \{x_1 a_1 + ... + x_m a_m, x_i \ge 0, i = 1, ..., m\}$$

 $der\ durch\ a_1,...,a_m$ erzeugte (konvexe) Kegel.

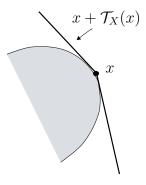
Definition 3.2. Sei $\emptyset \neq X \subseteq \mathbb{R}^n$. Eine Vektor $d \in \mathbb{R}^n$ heißt tangential zu X im Punkt $x \in X$, wenn Folgen $\{x^k\} \subseteq X$ und $\{t_k\} \subseteq \mathbb{R}$ existieren mit

$$x^k \longrightarrow x$$
 , $t_k \searrow 0$ und $\frac{x^k - x}{t_k} \longrightarrow d$ für $k \to \infty$,. (3.1)

Die Menge all dieser Richtungen

$$\mathcal{T}_X(x) = \{ d \in \mathbb{R}^N : \exists \{x^k\} \subseteq X, \{t_k\} \subseteq \mathbb{R} \ mit (3.1) \}$$

 $hei\beta t$ Tangentialkegel $von\ X\ in\ x\in X.$



Lemma 3.3. Seien $\emptyset \neq X \subseteq \mathbb{R}^n$ und $x \in X$. Dann ist $\mathcal{T}_X(x)$ ein abgeschlossener Kegel.

Beweis: als Übung.

Lemma 3.4. Seien $\emptyset \neq X \subseteq \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$ stetig differenzierbar und x^* ein lokales Minimum des Optimierungsproblems

$$\min f(x) \quad \text{u.d.N.} \quad x \in X. \tag{3.2}$$

Dann gilt $\nabla f(x^*)^T d \geq 0$ für alle $d \in \mathcal{T}_X(x^*)$.

Beweis: Sei $d \in \mathcal{T}_X(x^*)$ beliebig und $\{x^k\} \subseteq X$, $\{t_k\} \subseteq \mathbb{R}$ Folgen, die (3.1) erfüllen. Da $f \in \mathcal{C}'(\mathbb{R}^n)$ gilt mit dem MWS:

$$f(x^k) - f(x^*) = \nabla f(\xi^k)^T (x^k - x^*)$$

für alle $k \in \mathbb{N}$, wobei ξ^k auf der Verbindungsstrecke von x^k und x^* liegt. Also gilt:

$$\xi^k \to x^*$$
 für $k \to \infty$.

Da x^* ein lokales Minimum von (3.2) ist, gilt außerdem

$$f(x^k) - f(x^*) \ge 0 \qquad , \quad k \ge k_0$$

und somit

$$\nabla f(\xi^k)^T (x^k - x^*) \ge 0$$

für k hinreichend groß.

Somit gilt

$$\lim_{k \to \infty} \frac{\nabla f(\xi^k)^T (x^k - x^*)}{t_k} \, = \, \nabla f(x^*)^T \, d \quad \geq \, 0 \, .$$

Ein Vektor $x^* \in X$ mit

$$\nabla f(x^*)^T d \ge 0$$
 für alle $d \in \mathcal{T}_X(x^*)$ (3.3)

heißt stationärer Punkt von (3.2).

Im Falle $X = \mathbb{R}^n$ ist (3.3) äquivalent zu $\nabla f(x^*) = 0$.

Das Problem (3.2) habe von nun an die Gestalt

$$\begin{cases}
\min f(x) \\
\text{u.d.N.} \quad g_i(x) \le 0 , \quad i = 1, ..., m \\
h_j(x) = 0 , \quad j = 1, ..., p.
\end{cases}$$
(3.4)

Generell gelte $f \in \mathcal{C}^1(\mathbb{R}^n)$, g_i , $h_j \in \mathcal{C}^1(\mathbb{R}^n)$, i = 1, ..., m, j = 1, ..., p. Es ist also

$$X = \{x \in \mathbb{R}^n : g_i(x) \le 0, i = 1, ..., m, h_j(x) = 0, j = 1, ..., p\}$$

Problem: Die Bedingung (3.3) ist schwer zu handhaben, denn $\mathcal{T}_X(x)$ kann eine komplizierte Struktur haben.

Definition 3.5. Sei $x \in X$ ein zulässiger Punkt von (3.4). Dann heißt

$$\mathcal{T}_{lin}(x) := \{ d \in \mathbb{R}^n : \nabla g_i(x)^T d \leq 0, i \in I(x), \nabla h_i(x)^T d = 0, j = 1, ..., p \}$$

 $lineartisierter\ Tangentialkegel\ von\ X\ in\ x,\ wobei$

$$I(x) := \{i \in \{1, ..., m\} : g_i(x) = 0\}$$

die Menge der aktiven Ungleichungsrestriktionen in x ist.

Lemma 3.6. Sei $x \in X$ ein zulässiger Punkt von (3.4). Dann gilt

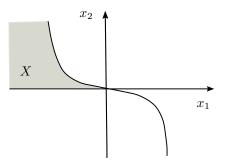
$$\mathcal{T}_X(x) \subseteq \mathcal{T}_{lin}(x)$$
.

Beweis: als Übung mit Hinweis:

Zeige: $\nabla g_i(x^k)^T d \leq 0$, $i \in I(x)$ und verwende Lemma 3.4.

Beispiel 3.7

$$\min -x_1$$
 u.d.N. $x_2 + x_1^3 \le 0$
 $-x_2 \le 0$



$$x^* = (0,0)^T$$
 ist das eindeutige Minimum. Mit $g_1(x) = x_2 + x_1^3$, $g_2(x) = -x_2$ ist $I(x^*) = \{1,2\}$, $\nabla g_1(x) = (3x_1^2,1)$, $\nabla g_2(x) = (0,-1)$

Daher ist

$$\mathcal{T}_{lin}(x^*) = \{ d \in \mathbb{R}^2 : \nabla g_1(x^*)^T d \le 0, \nabla g_2(x^*)^T d \le 0 \}$$
$$= \{ (d_1, d_2)^T \in \mathbb{R}^2, d_2 = 0 \}$$

Aber:

$$\mathcal{T}_X(x^*) = \{(d_1, 0) : d_1 \in \mathbb{R}, d_1 \le 0\},\$$

also

$$\mathcal{T}_X(x^*) \subsetneq \mathcal{T}_{lin}(x^*)$$
.

Definition 3.8. Ein zulässiger Punkt $x \in X$ von (3.4) erfüllt die Regularitätsbedingung von Abadie (Abadie Constraint Qualification ACQ), falls $\mathcal{T}_X(x) = \mathcal{T}_{lin}(x)$ gilt.

Definition 3.9. a) Die durch

$$L(x,\lambda,\mu) := f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$
 (3.5)

definierte Abbildung

$$L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$$

heißt Lagrange-Funktion des Problems (3.4).

b) Die Bedingungen

$$\begin{cases}
\nabla_x L(x, \lambda, \mu) = 0 \\
h(x) = 0 \\
\lambda \ge 0, \ g(x) \le 0, \ \lambda^T g(x) = 0
\end{cases}$$
(3.6)

heißen Karusch - Kuhn - Tucker - (KKT-) Bedingungen des Problems (3.4) mit

$$\nabla_x L(x, \lambda, \mu) = \nabla f(x) + \sum_{i=1}^m \lambda_i \nabla g_i(x) + \sum_{j=1}^p \mu_j \nabla h_j(x).$$
 (3.7)

c) Genügt der Vektor $(x^*, \lambda^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$ den KKT - Bedingungen, so nennen wir (x^*, λ^*, μ^*) einen KKT-Punkt. Ist zusätzlich

$$\lambda_i^* + g_i(x^*) \neq 0 \qquad \forall i = 1, ..., m$$

so genügt der KKT - Punkt (x^*, λ^*, μ^*) der strikten Komplementarität.

Bemerkung: a) Zu c): Wegen (3.6) gilt für einen KKT-Punkt (x^*, λ^*, μ^*) stets $\lambda_i^* g_i(x^*) = 0$ für alle i = 1, ..., m, also $\lambda_i^* = 0$ oder $g_i(x^*) = 0$, i = 1, ..., m. b) Ist m = p = 0, so lauten die KKT-Bedingungen ganz einfach:

$$\nabla f(x^*) = 0.$$

c) Aus (3.7) ist zu ersehen, dass im Falle p=0 für einen KKT-Punkt gilt

$$-\nabla f(x^*) \in \text{cone} \{ \nabla g_i(x^*) : i \in I(x^*) \},$$

wobei $I(x^*) = \{i : g_i(x^*) = 0\}$ ist. Für $i \notin I(x^*)$ gilt $\lambda_i^* = 0$.

Lemma 3.10. (Lemma von Farkas)

Seien $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$ gegeben. Dann sind die folgenden Aussagen äquivalent.

- a) Das System $A^Tx = b$, $x \ge 0$ besitzt eine Lösung.
- b) Die Ungleichung $b^T d \geq 0$ gilt für alle $d \in \mathbb{R}^n$ mit $Ad \geq 0$.

Satz 3.11 (KKT - Bedingungen unter ACQ)

Sei $x^* \in \mathbb{R}^n$ ein lokales Minimum des Optimierungsproblems (3.4), welches der ACQ genüge. Dann existieren Lagrange-Multiplikatoren $\lambda^* \in \mathbb{R}^m$, $\mu^* \in \mathbb{R}^p$, so dass (x^*, λ^*, μ^*) ein KKT-Punkt von (3.4) ist.

Beweis: Lemma 3.4 besagt, dass

$$\nabla f(x^*)^T d \ge 0$$
 für alle $d \in \mathcal{T}_X(x^*)$

ist. Wegen $\mathcal{T}_X(x^*) = \mathcal{T}_{lin}(x^*)$ (ACQ) ist dann

$$-\nabla f(x^*)^T d < 0$$

für alle $d \in \mathbb{R}^n$ mit $Ad \leq 0$, wobei die Zeilen von A mit $A \in \mathbb{R}^{(|I(x^*)|+2p)\times n}$ gegeben sind durch

$$\nabla g_i(x^*)^T , i \in I(x^*), \nabla h_j(x^*)^T , j = 1, ..., p, -\nabla h_j(x^*)^T , j = 1, ..., p.$$

 $(Ad \leq 0 \Leftrightarrow d \in \mathcal{T}_{lin}(x^*).)$

Das Lemma von Farkas garantiert die Existenz einer Lösung des Systems

$$A^T y = -\nabla f(x^*) \quad , \quad y \ge 0 \, .$$

Definieren wir nun

$$\lambda_i^* = \left\{ \begin{array}{l} y_i & , i \in I(x^*) \\ 0 & , i \notin I(x^*) \end{array} \right.$$

sowie

$$\mu_i^+ := y_{i+|I(x^*)|}$$
 , $i = 1, ..., p$
 $\mu_i^- := y_{i+p+|I(x^*)|}$, $i = 1, ..., p$

und

$$\mu_i^* = \mu_i^+ - \mu_i^-$$
 , $i = 1, ..., p$

so ist (x^*, λ^*, μ^*) ein KKT-Punkt.

Optimalitätsbedingungen für lineare Restriktionen:

Betrachte

$$\begin{cases}
\min f(x) \\
\text{u.d.N.} \quad a_i^T x \leq \alpha_i \quad i = 1,, m \\
b_j^T x = \beta_j \quad j = 1, ..., p
\end{cases}$$

$$\in \mathcal{C}^1(\mathbb{R}^n) , \quad a_i, b_i \in \mathbb{R}^n , \quad \alpha_i, \beta_i \in \mathbb{R}.$$
(3.8)

In diesem Falle sind die KKT-Bedingungen notwendige Bedingungen für ein lokales Minimum.

Satz 3.12 (KKT-Bedingungen für lineare Restriktionen)

Sei x^* ein lokales Minimum von (3.8). Dann existieren Lagrange-Multiplikatoren $\lambda^* \in \mathbb{R}^m$, $\mu^* \in \mathbb{R}^p$, so dass (x^*, λ^*, μ^*) den KKT-Bedingungen

$$\begin{cases}
\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i^* a_i + \sum_{j=1}^{p} \mu_j^* b_j = 0 \\
b_j^T x^* = \beta_j &, j = 1, ..., p \\
a_i^T x^* \le \alpha_i &, i = 1, ..., m \\
\lambda_i^* (a_i^T x^* - \alpha_i) = 0 &, i = 1, ..., m \\
\lambda_i^* \ge 0 &, i = 1, ..., m
\end{cases}$$
(3.9)

von (3.8) genügt.

Beweis: Mit $g_i(x) := a_i^T x - \alpha_i$, $h_j(x) := b_j^T x - \beta_j$ sind (3.9) in der Tat die KKT-Bedingungen für (3.8).

Wir zeigen, dass die ACQ für (3.8) erfüllt ist, dass also $\mathcal{T}_X(x^*) = \mathcal{T}_{lin}(x^*)$ gilt. Mit Satz 3.11 folgt dann die Behauptung. Wegen Lemma 3.6 genügt es zu zeigen:

$$\mathcal{T}_{lin}(x^*) \subseteq \mathcal{T}_X(x^*)$$
.

Sei $d \in \mathcal{T}_{lin}(x^*)$.

$$\Rightarrow a_i^T d \leq 0 , i \in I(x^*)$$
$$b_i^T d = 0 , j = 1, ..., p$$

Es sei $\{t_k\}$ eine beliebige Folge mit $t_k \searrow 0$. Setze

$$x^k := x^* + t_k d.$$

Für k hinreichend groß gilt dann:

$$a_i^T x^k = a_i^T (x^* + t_k d) = \alpha_i + t_k a_i^T d \leq \alpha_i \quad , \quad \forall i \in I(x^*)$$

$$a_i^T x^k = a_i^T (x^* + t_k d) = a_i^T x^* + t_k a_i^T d < \alpha_i \quad , \quad \forall i \notin I(x^*), \ k \geq k_0$$

$$b_i^T x^k = b_i^T (x^* + t_k d) = b_i^T x^* + t_k b_i^T d = \beta_i \quad , \quad \forall j = 1, ..., p$$

Das heißt: $\{x^k\}$ ist zulässig und $x^k \to x^*$, $k \to \infty$. Wegen

$$\frac{x^k - x^*}{t^k} = d \to d$$

folgt $d \in \mathcal{T}_X(x^*)$.

Bemerkung: Die Aussage von Satz 3.12 ist nicht erstaunlich, da $\mathcal{T}_{lin}(x^*)$ durch Linearisierung von $\mathcal{T}_X(x^*)$ entstanden ist.

Optimalitätsbedingungen für konvexe Restriktionen:

Wir betrachten das Problem

$$\begin{cases} \min f(x) \\ \text{u.d.N.} \ g_i(x) \le 0 \quad i = 1, ..., m \\ b_j^T x = \beta_j \quad j = 1, ..., p \end{cases}$$
 (3.10)

wobei $f, g_i \in \mathcal{C}^1(\mathbb{R}^n)$ konvexe Funktionen sind, $b_j \in \mathbb{R}^n, \beta_j \in \mathbb{R}$. Dabei heißt eine Funktion $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ konvex, falls X konvex ist und

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

für alle $x, y \in X$ und alle $\lambda \in (0, 1)$ gilt.

Lemma 3.13. Sei $\emptyset \neq X \subseteq \mathbb{R}^n$ konvex.

a) Eine Funktion $f \in C^1(X)$ ist genau dann konvex, wenn für alle $x, y \in X$

$$f(x) - f(y) \ge \nabla f(y)^T (x - y) \tag{3.11}$$

qilt

b) Ist $f: X \to \mathbb{R}$ konvex, so ist jedes lokale Minimum des Optimierungsproblems

$$\min f(x)$$
 u.d.N. $x \in X$

bereits ein globales Minimum.

Beweis: als Übung.

Definition 3.14. Das Problem (3.10) genügt der Regularitätsbedingung von Slater, wenn es ein $\hat{x} \in \mathbb{R}^n$ gibt mit

$$\begin{cases} g_i(\hat{x}) < 0 , & i = 1, ..., m \text{ und} \\ b_j^T \hat{x} = \beta_j , & j = 1, ..., p \end{cases}$$
 (3.12)

d.h. \hat{x} ist strikt zulässig bzgl. der Ungleichungsrestriktionen und zulässig bzgl. der Gleichheitsrestriktionen.

Satz 3.15 (KKT-Bedingungen unter Slater-Bedingungen)

Sei $x^* \in \mathbb{R}^n$ ein (lokales=globales) Minimum des Problems (3.10) und es gelte die Slater-Bedingung. Dann existieren Multiplikatoren $\lambda^* \in \mathbb{R}^m$, $\mu^* \in \mathbb{R}^p$, so dass (x^*, λ^*, μ^*) den KKT-Bedingungen genügt:

$$\begin{cases}
\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) + \sum_{j=1}^p \mu_j^* b_j = 0 \\
b_j^T x^* = \beta_j &, j = 1, ..., p \\
g_i(x^*) \le 0 &, i = 1, ..., m \\
\lambda_i^* \ge 0, \lambda_i^* g_i(x^*) = 0 &, i = 1, ..., m
\end{cases}$$
(3.13)

Beweis: Aufgrund von Satz 3.11 (ACQ) genügt es wieder $\mathcal{T}_{lin}(x^*) \subseteq \mathcal{T}_X(x^*)$ zu zeigen. (X ist die zulässige Menge von (3.10) und damit konvex.) Sei

$$\mathcal{T}_{strict}(x^*) = \{ d \in \mathbb{R}^n : \nabla g_i(x^*)^T d < 0, i \in I(x^*), b_i^T d = 0, j = 1, ..., p \},$$

$$I(x^*) = \{i : g_i(x^*) = 0\}.$$

Es gilt:

$$\mathcal{T}_{strict}(x^*) \subseteq \mathcal{T}_X(x^*)$$

(Als Übung mit Aufgabe 2.22 Kanzow/Geiger)

Aus Lemma 3.3 folgt

$$\operatorname{cl}(\mathcal{T}_{strict}(x^*)) \subseteq \mathcal{T}_X(x^*)$$

Es ist nun zu zeigen:

$$\mathcal{T}_{lin}(x^*) \subseteq \operatorname{cl}(\mathcal{T}_{strict}(x^*)).$$

Sei $d \in \mathcal{T}_{lin}(x^*)$ beliebig. Sei weiter $\hat{x} \in \mathbb{R}^n$ ein Vektor gemäß (3.12). Wir setzen

$$\hat{d} := \hat{x} - x^*$$

Da g_i konvex ist, i = 1, ..., m, gilt mit (3.11):

$$\nabla g_i(x^*)^T \hat{d} \le g_i(\hat{x}) - g_i(x^*) < 0$$
 , $i \in I(x^*)$.

Und:

$$\nabla h_j(x^*)^T \hat{d} = h_j(\hat{x}) - h_j(x^*) = 0$$
 , $j = 1, ..., p$

 $(\nabla h_i(x) = b_i).$

Setzen wir $d(\delta) := d + \delta \hat{d}$ für $\delta > 0$, so folgt

$$\nabla g_i(x^*)^T d(\delta) < 0$$
 , $i \in I(x^*)$

$$\nabla h_i(x^*)^T d(\delta) = 0 \qquad , \quad j = 1, ..., p$$

Daraus schließen wir:

$$d(\delta) \in \mathcal{T}_{strict}(x^*)$$
 für alle $\delta > 0$.

Und mit $\delta \searrow 0$ sehen wir: $d \in \operatorname{cl}(\mathcal{T}_{strict}(x^*))$.

Also:

$$\mathcal{T}_{lin}(x^*)) \subseteq \mathcal{T}_X(x^*)$$

und damit

$$\mathcal{T}_{lin}(x^*) = \mathcal{T}_X(x^*).$$

Für konvexe Probleme sind die KKT-Bedingungen sogar hinreichend!

Satz 3.16 Sei (x^*, λ^*, μ^*) ein KKT-Punkt für das Problem (3.10). Dann ist x^* (lokales=globales) Minimum von (3.10).

Beweis: Sei $x \in \mathbb{R}^n$ ein zulässiger Vektor für das konvexe Problem (3.10). Aus den KKT-Bedingungen sowie (3.11) folgern wir:

$$f(x) \ge f(x^*) + \nabla f(x^*)^T (x - x^*)$$

$$= f(x^*) - \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*)^T (x - x^*) - \sum_{j=1}^p \mu_j^* b_j^T (x - x^*)$$

$$= f(x^*) - \sum_{i \in I(x^*)} \lambda_i^* \nabla g_i(x^*)^T (x - x^*) \quad \text{(sonst } \lambda_i^* = 0)$$

$$\ge f(x^*)$$

wegen $\lambda_i^* \geq 0$ und

$$\nabla g_i(x^*)^T (x - x^*) \le g_i(x) - g_i(x^*) \le 0$$

für alle $i \in I(x^*)$ wegen (3.11).

 $\Rightarrow x^*$ ist ein Minimum von (3.10).

Korollar 3.17 Gegeben sei das Problem (3.10), wobei jetzt auch die $g_i : \mathbb{R}^n \to \mathbb{R}$ linear seien. Dann ist $x^* \in \mathbb{R}^n$ genau dann ein (lokales=globales) Minimum von (3.10), wenn es Lagrange-Multiplikatoren $\lambda^* \in \mathbb{R}^m$, $\mu^* \in \mathbb{R}^p$ gibt, so dass das Tripel (x^*, λ^*, μ^*) ein KKT-Punkt von (3.10) ist.

Beweis: Satz 3.12 und Satz 3.16

Anmerkung: In Satz (3.16) kamen wir ohne Slater-Bedingungen aus!

Alternative Charakterisierung von KKT-Punkten:

Definition 3.18. Ein Vektor $(x^*, \lambda^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$ mit $\lambda^* \geq 0$ heißt Sattelpunkt der Lagrange-Funktion \mathcal{L} , wenn die Ungleichungen

$$\mathcal{L}(x^*, \lambda, \mu) \le \mathcal{L}(x^*, \lambda^*, \mu^*) \le \mathcal{L}(x, \lambda^*, \mu^*)$$
(3.14)

 $gelten \ f\ddot{u}r \ alle \ (x,\lambda,\mu) \in \mathbb{R}^n \times \mathbb{R}^m_+ \times \mathbb{R}^p.$

Bemerkung: (3.14) besagt, dass x^* ein Minimum von $\mathcal{L}(\cdot, \lambda^*, \mu^*)$ auf \mathbb{R}^n ist, und (λ^*, μ^*) ein Maximum von $\mathcal{L}(x^*, \cdot, \cdot)$ auf $\mathbb{R}^m_+ \times \mathbb{R}^p$ darstellt. \longrightarrow "Sattelpunkt".

Satz 3.19 (Sattelpunkt-Theorem)

Gegeben sei das Problem (3.10). Das Tripel $(x^*, \lambda^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$ ist genau dann ein Sattelpunkt der Lagrange-Funktion \mathcal{L} , wenn (x^*, λ^*, μ^*) ein KKT-Punkt von (3.10) ist.

Beweis: " \Rightarrow " Sei (x^*, λ^*, μ^*) ein Sattelpunkt von \mathcal{L} . Aus (3.14) folgt, dass x^* globales Minimum von $\mathcal{L}(\cdot, \lambda^*, \mu^*)$ ist und somit

$$\nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = 0$$

gilt. (3.14) liefert außerdem

$$\sum_{i=1}^{m} \lambda_i g_i(x^*) + \sum_{j=1}^{p} \mu_j h_j(x^*) \le \sum_{i=1}^{m} \lambda_i^* g_i(x^*) + \sum_{j=1}^{p} \mu_j^* h_j(x^*)$$
(3.15)

für alle $\lambda \in \mathbb{R}^m_+$, $\mu \in \mathbb{R}^p$ mit $h_j(x) := b_j^T x - \beta_j$. Aus (3.15) folgt $g(x^*) \leq 0$ und $h(x^*) = 0$, da sonst für $\lambda_i \to \infty$, $|\mu_j| \to \infty$ (3.15) verletzt werden kann.

Wähle nun $\lambda = 0$ und $\mu = \mu^*$ in (3.15)

$$\implies \sum_{j=1}^{p} \mu_{j}^{*} h_{j}(x^{*}) \leq \sum_{i=1}^{m} \lambda_{i}^{*} g_{i}(x^{*}) + \sum_{j=1}^{p} \mu_{j}^{*} h_{j}(x^{*})$$

Also gilt

$$\sum_{i=1}^{m} \lambda_i^* g_i(x^*) \ge 0$$

und daher:

$$\lambda_i^* g_i(x^*) = 0$$
 , $i = 1, ..., m$

wegen $\lambda_i^* \geq 0$, $g_i(x^*) \leq 0$.

 $\implies (x^*, \lambda^*, \mu^*)$ ist ein KKT-Punkt von (3.10).

"\(\sim \) Sei (x^*, λ^*, μ^*) ein KKT-Punkt (3.10).

$$\implies \nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = 0$$
 (1. KKT-Bed.)

 \Rightarrow ist ein stationärer Punkt von $\mathcal{L}(\cdot, \lambda^*, \mu^*)$.

Da $\mathcal{L}(\cdot, \lambda^*, \mu^*)$ konvex ist, ist x^* ein globales Minimum von $\mathcal{L}(\cdot, \lambda^*, \mu^*)$. Also gilt

$$\mathcal{L}(x^*, \lambda^*, \mu^*) \leq \mathcal{L}(x, \lambda^*, \mu^*)$$
, $x \in \mathbb{R}^n$

Unter Ausnutzung von $g_i(x^*) \leq 0$, $h(x^*) = 0$ und $\lambda_i^* g_i(x^*) = 0$ folgt:

$$\mathcal{L}(x^*, \lambda^*, \mu^*) = f(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*) + \sum_{j=1}^p \mu_j^* h_j(x^*)$$

$$= f(x^*)$$

$$\geq f(x^*) + \sum_{i=1}^m \lambda_i g_i(x^*) + \sum_{j=1}^p \mu_j h_j(x^*)$$

$$= \mathcal{L}(x^*, \lambda, \mu)$$

für alle $\lambda \geq 0$, $\mu \in \mathbb{R}^p$. $\implies (x^*, \lambda^*, \mu^*)$ ist ein Sattelpunkt von \mathcal{L} .

Zusammenfassung:

Korollar 3.20 Gegeben sei das konvexe Problem (3.10).

- (a) Ist $(x^*, \lambda^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^m_+ \times \mathbb{R}^p$ ein Sattelpunkt der Lagrange-Funktion \mathcal{L} , so ist x^* ein globales Minimum von (3.10).
- (b) Ist x^* ein (lokales=globales) Minimum von (3.10) und ist die Slater-Bedingung erfüllt, so gibt es $\lambda^* \in \mathbb{R}^m$ und $\mu^* \in \mathbb{R}^p$, so dass (x^*, λ^*, μ^*) ein Sattelpunkt von \mathcal{L} ist.
- (c) Sind die Funktionen g_i, h_j in (3.10) alle linear, so ist x^* genau dann ein (lokales=globales) Minimum von (3.10), wenn es Vektoren $\lambda^* \in \mathbb{R}^m$ und $\mu^* \in \mathbb{R}^p$ gibt, so dass (x^*, λ^*, μ^*) ein Sattelpunkt der Lagrange-Funktion ist.

Weitere Optimalitätskriterien

Erinnerung: (3.4)

$$\begin{cases} \min f(x) \\ \text{u.d.N.} & g_i(x) \le 0 , i = 1, ..., m \\ h_j(x) = 0 , j = 1, ..., p \end{cases}$$

Definition 3.21. Seien $x \in \mathbb{R}^n$ ein zulässiger Punkt von (3.4) und $I(x) = \{i : g_i(x) = 0\}.$

a) Dann genügt x der Regularitätsbedingung der linearen Unabhängigkeit (linear independence constraint qualification, LICQ), wenn die Gradienten

$$\nabla g_i(x)$$
 , $i \in I(x)$

$$\nabla h_j(x)$$
 , $j = 1, ..., p$

linear unabhänhig sind.

- b) Der Vektor x genügt der Regularitätsbedingung von Mangasarian-Fromovitz (MFCQ), wenn gilt:
 - i) Die Gradienten

$$\nabla h_i(x)$$
 , $j = 1, ..., p$

sind linear unabhängig.

ii) Es existiert ein Vektor $d \in \mathbb{R}^n$ mit

$$\nabla g_i(x)^T d < 0$$
 , $i \in I(x)$ und $\nabla h_j(x)^T d = 0$, $j = 1, ..., p$.

Satz 3.22 Sei $x^* \in \mathbb{R}^n$ ein lokales Minimum von (3.4), welches der LICQ oder der MFCQ genügt. Dann existieren Lagrange-Multiplikatoren $\lambda^* \in \mathbb{R}^m$, $\mu^* \in \mathbb{R}^p$ derart, dass das Tripel (x^*, λ^*, μ^*) ein KKT-Punkt von (3.4) ist. Die Multiplikatoren λ^*, μ^* sind im Falle der LICQ sogar eindeutig bestimmt.

Beweis: Teile als Übung.

Optimalitätsbedingungen 2.Ordnung:

Es sei weiterhin (3.4) gegeben, wobei die Funktionen $f: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^p$, $g: \mathbb{R}^n \to \mathbb{R}^m$ zweimal stetig differenzierbar seien.

Weiter sei (x^*, λ^*, μ^*) ein KKT-Punkt von (3.4) und

$$I(x^*) = \{i : g_i(x^*) = 0\}$$

Es gilt dann

$$I(x^*) = I_0(x^*) \cup I_{>}(x^*)$$

 $_{
m mit}$

$$I_0(x^*) := \{ i \in I(x^*) : \lambda_i^* = 0 \},$$

 $I_{>}(x^*) := \{ i \in I(x^*) : \lambda_i^* > 0 \}.$

Schließlich definieren wir noch

$$\mathcal{T}(x^*) := \begin{cases} \nabla g_i(x^*)^T d = 0 &, i \in I_{>}(x^*) \\ d \in \mathbb{R}^n : \nabla g_i(x^*)^T d \leq 0 &, i \in I_0(x^*) \\ \nabla h_j(x^*)^T d = 0 &, j = 1, ..., p \end{cases}$$

Satz 3.23 (Notwendiges Kriterium 2. Ordnung)

Sein $x^* \in X$ ein lokales Minimum von (3.4) welches der LICQ-Bedingung genüge. $(I_0(x^*), I_>(x^*)$ hängen dann nicht von λ^* ab, da eindeutig.) Dann ist

$$d^T \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*, \mu^*) d \geq 0 \qquad \forall d \in \mathcal{T}(x^*),$$

wobei $\lambda^* \in \mathbb{R}^m$ und $\mu^* \in \mathbb{R}^p$ die gemäß Satz 3.22 eindeutig bestimmten Lagrange-Multiplikatoren sind.

Satz 3.24 (Hinreichendes Kriterium 2. Ordnung)

 $Sei~(x^*,\lambda^*,\mu^*)~ein~KKT ext{-}Punkt~von~(3.4)~mit$

$$d^T \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*, \mu^*) d > 0 \qquad \forall d \in \mathcal{T}(x^*), d \neq 0$$

Dann ist x^* ein striktes Minimum von (3.4) (d.h. \exists Umbebung U von x^* mit $f(x^*) < f(x) \ \forall \ x \in U$ zulässig , $x \neq x^*$).

 ∇_{xx}^2 bezeichnet stets die Hesse-Matrix von \mathcal{L} bzgl. x!

Bemerkung: Im Falle eines unrestringierten Problems

$$\min_{x \in \mathbb{R}^n} f(x)$$

stimmen die Kriterien in Satz 3.23 und Satz 3.24 wegen $\mathcal{T}(x^*) = \mathbb{R}^n$ mit den aus der Analysis bekannten Kriterien für lokale Minima überein.

3.2 Dualität

Wir betrachten wieder das lineare Programm

$$\min c^T x \quad \text{u.d.N.} \quad Ax = b \quad , \quad x \ge 0 \tag{3.16}$$

mit $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$.

Definition 3.25. Das Maximierungsproblem

$$\max b^T \lambda \quad \text{u.d.N.} \quad A^T \lambda \le c \tag{3.17}$$

 $nennen\ wir\ das\ zu\ (3.16)$ duale $lineare\ Programm.\ Wir\ bezeichnen\ (3.16)\ als\ primales\ lineares\ Program.$

Durch Einführung einer nichtnegativen Schlupfvariablen geht (3.17) über in

$$\max b^T \lambda \quad \text{u.d.N.} \quad A^T \lambda + s = c \,, \ s \ge 0 \,. \tag{3.18}$$

Satz 3.26 Die folgenden Aussagen sind äquivalent

- (a) Das primale Problem (3.16) besitzt eine Lösung x^* .
- (b) Das duale Problem (3.18) besitzt eine Lösung (λ^*, μ^*) .
- (c) Die Optimalitätsbedingungen

$$A^{T}\lambda + s = c$$

$$Ax = b$$

$$x_{i}s_{i} = 0 , i = 1, ..., n$$

$$x, s \ge 0$$

besitzen eine Lösung (x^*, λ^*, μ^*) .

Beweis: $''(a) \Leftrightarrow (c)''$

Das primale Problem (3.16) ist ein konvexes Optimierungsproblem mit linearen Nebenbedingungen. Korollar 3.17 besagt, dass $x^* \in \mathbb{R}^n$ genau dann Lösung von (3.16) ist, wenn es einen KKT-Punkt für (3.16) gibt.

KKT-Bedingungen für (3.16):

(3.16)
$$\iff \min f(x) \text{ u.d.N. } g(x) \le 0, h(x) = 0$$

mit

$$f: \mathbb{R}^n \to \mathbb{R} \quad , \quad f(x) = c^T x \qquad , \quad \nabla f(x) = c$$

$$g: \mathbb{R}^n \to \mathbb{R}^n \quad , \quad g(x) = -x \qquad , \quad \nabla g(x) = -I$$

$$h: \mathbb{R}^n \to \mathbb{R}^m \quad , \quad h(x) = Ax - b \quad , \quad \nabla h(x) = A$$

i)
$$\nabla_x \mathcal{L}(x, \tilde{\lambda}, \tilde{\mu}) \stackrel{!}{=} 0$$

$$\Leftrightarrow \nabla f(x) + \sum_{i=1}^{n} \tilde{\lambda}_{i} \nabla g_{i}(x) + \sum_{j=1}^{m} \tilde{\mu}_{j} \nabla h_{j}(x) = 0 \quad , \ \tilde{\lambda} \in \mathbb{R}^{n} , \ \tilde{\mu} \in \mathbb{R}^{m}$$

$$\Leftrightarrow c + \sum_{j=1}^{n} \tilde{\lambda}_{i}(-e_{i}) + \sum_{j=1}^{m} \tilde{\mu}_{j} a_{j} = 0$$

mit $e_i = (0, ..., 0, 1, 0, ..., 0)^T \in \mathbb{R}^n$ und $a_j \in \mathbb{R}^n = j$ -te Zeile von A.

$$\Leftrightarrow A^T \tilde{\mu} - \tilde{\lambda} + c = 0 \Leftrightarrow \tilde{\lambda} - A^T \tilde{\mu} = c$$

ii) $h(x) = 0 \Leftrightarrow Ax = b$

iii)

$$\begin{split} \tilde{\lambda} & \geq 0 \qquad , \quad g(x) \leq 0 \quad , \quad \tilde{\lambda}^T g(x) = 0 \\ \Leftrightarrow \quad \tilde{\lambda} \geq 0 \qquad , \quad x \geq 0 \qquad , \quad \sum_{i=1}^n \tilde{\lambda}_i x_i = 0 \\ \Leftrightarrow \quad \tilde{\lambda}_i x_i = 0 \quad , \quad i = 1, ..., n \end{split}$$

Definiere nun $\lambda := -\tilde{\mu} \in \mathbb{R}^m$ und $s := \tilde{\lambda} \in \mathbb{R}^n$, so ergibt i)-iii) die Bedingungen (c).

 $''(b) \Leftrightarrow (c)''$ Analog als Übung.

Beachte: (3.18) ist ein Maximierungsproblem!

Bemerkung: Satz 3.26 sagt nichts über die Existenz von Lösungen aus!

Beispiel 3.27

$$\min x_1 + x_2$$
 u.d.N. $x_1 + x_2 = -1$, $x_1, x_2 \ge 0$

hat keinen zulässigen Punkt und daher keine Lösung.

Frage: Wann hat ein lineares Programm eine Lösung ? \hookrightarrow Dualitätssätze

Satz 3.28 (Schwache Dualität)

Sei $x \in \mathbb{R}^n$ ein zulässiger Punkt des primalen Problems (3.16) und $(\lambda, s) \in \mathbb{R}^m \times \mathbb{R}^n$ ein zulässiger Punkt des dualen Problems (3.18). Dann gilt:

$$b^T \lambda \leq c^T x$$
.

Beweis: Da x und (λ, s) zulässig sind ergibt sich

$$b^T \lambda = (Ax)^T \lambda = x^T (A^T \lambda) = x^T (c-s) < c^T x$$

denn es ist $x^T s \ge 0$ wegen $x, s \ge 0$.

Satz 3.28 liefert eine untere Schranke für den Wert der Zielfunktion $f(x) = c^T x$. Sei

$$\inf(P) := \inf \{ c^T x : Ax = b, x \ge 0 \}$$

und

$$\sup(D) := \sup \{ b^T \lambda : A^T \lambda + s = c, s \ge 0 \},$$

so gilt also

$$\sup(D) < \inf(P)$$
.

Wir setzen $\inf(P) := \infty$ bzw. $\sup(D) := -\infty$, falls (3.16) bzw. (3.18) keine zulässigen Punkte besitzt.

Korollar 3.29 Seien $x \in \mathbb{R}^n$ ein zulässiger Punkt für (3.16) und $(\lambda, s) \in \mathbb{R}^m \times \mathbb{R}^n$ zulässig für (3.18). Weiter gelte

$$c^T x = b^T \lambda$$
.

Dann ist x Lösung von (3.16) und (λ, s) Lösung von (3.18).

Beweis: Sei $\xi \in \mathbb{R}^n$ ein beliebiger zulässiger Vektor von (3.16). Dann gilt mit Satz 3.28

$$c^T x = b^T \lambda < c^T \xi$$

Beweis für (λ, s) analog.

Zwischenfazit: Die schwache Dualität besagt: $c^T x - b^T \lambda \geq 0$. und Korollar 3.29: $c^T x - b^T \lambda = 0 \Rightarrow x$ ist Lösung von (3.16) und (λ, s) von (3.18), wobei $s \in \mathbb{R}^n$ so gewählt wurde, dass (λ, s) zulässig ist.

Es ist dann $\inf(P) = \sup(D)$. Gilt $\inf(P) > \sup(D)$, so spricht man von einer Dualitätslücke.

Satz 3.30 (Starke Dualität)

Besitzt (3.16) eine Lösung x oder hat das duale Problem (3.16) eine Lösung (λ, s) , so gilt $\inf(P) = \sup(D)$, d.h. es existiert keine Dualitätslücke.

Beweis: Sei x eine Lösung von (3.16). Satz 3.26 (Optimalitätsbedingungen) garantiert die Existenz von $(x, \lambda, s) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^n$ mit

$$0 = s^T x = (c - A^T \lambda)^T x = c^T x - \lambda^T (Ax) = c^T x - b^T \lambda$$

Mit Korollar 3.29 folgt die Behauptung.

Analog argumentiert man für das duale Problem.

Satz 3.31 (Existenzsatz)

- a) Ist $\inf(P) \in \mathbb{R}$, so besitz das primale Programm (3.16) eine Lösung.
- b) Ist $\sup(D) \in \mathbb{R}$, so besitzt das duale Programm (3.18) eine Lösung.

Beweis: a) Sei $f^* := \inf(P) \in \mathbb{R}$

Annahme: Es gibt kein primal zulässiges $x \in \mathbb{R}^n$ mit $f^* = c^T x$, also es gelte

$$c^T x \,>\, f^* \qquad \text{für alle } \,x \geq 0 \,\;,\,\; A x = b \,. \eqno(3.19)$$

Also besitzt das System

$$B^T x := \begin{pmatrix} c^T \\ -A \end{pmatrix} x = \begin{pmatrix} f^* \\ -b \end{pmatrix} =: h \in \mathbb{R}^{m+1}$$

keine Lösung $x \ge 0$, $B^T \in \mathbb{R}^{(m+1) \times n}$.

Lemma von Farkas \Rightarrow

Es gibt ein $d \in \mathbb{R}^{m+1}$ mit $h^T d < 0$ und $Bd \ge 0$.

Sei $d = (\alpha, \lambda)$, $d \in \mathbb{R}$, $\lambda \in \mathbb{R}^m$, so folgern wir

$$\alpha f^* - b^T \lambda < 0 \tag{3.20}$$

sowie

$$\alpha c - A^T \lambda \ge 0. (3.21)$$

Ist x ein primal zulässiger Vektor (der wegen $\inf(P) \in \mathbb{R}$ existiert), so folgt aus (3.21)

$$\alpha c^T x - x^T A^T \lambda = \alpha c^T x - (Ax)^T \lambda$$
$$= \alpha c^T x - b^T \lambda > 0$$

und aus (3.20) dann

$$\alpha c^T x \geq b^T \lambda > \alpha f^*$$
,

woraus wir $\alpha > 0$ schließen (vgl.(3.19)).

Man erhält also

$$f^* < b^T \overline{\lambda}$$
 und $A^T \overline{\lambda} \le c$

mit $\overline{\lambda} := \lambda/\alpha$.

Mit $\overline{s} := c - A^T \overline{\lambda}$ ist $(\overline{\lambda}, \overline{s})$ dual zulässig mit $b^T \overline{\lambda} > \inf(P)$

Widerspruch zu Satz 3.28!

b) analog.

Korollar 3.32 Sind das primale und das duale Programm beide zulässig, so haben beide Programme eine optimale Lösung.

Beweis: Aus der schwachen Dualität und der Zulässigkeit folgt

$$-\infty < \sup(D) \le \inf(P) < +\infty$$

und mit Satz 3.31 die Behauptung.

ACHTUNG: Der Existenzsatz 3.31 gilt nur für lineare Probleme! Der optimale Wert des Problems

$$\min f(x) = e^x \qquad , \quad x \in \mathbb{R}$$

ist 0 und wird von keinem $x \in \mathbb{R}$ angenommen.

Die Konstruktion von Innere-Punkte-Verfahren beruht auf dem Prinzip der Dualität.

Lineare Optimierung II: Innere – Punkte – Methoden

Ziel: Alternative zum Simplex-Verfahren für große lineare Programme.

Betrachte das primale Programm

$$\min c^T x \qquad \text{u.d.N} \quad Ax = b \,, \ x \ge 0 \tag{4.1}$$

und das zugehörige duale Programm

$$\max b^T \lambda \qquad \text{u.d.N} \quad A^T \lambda + s = c \;,\; s \geq 0 \eqno(4.2)$$

 $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$.

Satz 3.26 besagt, dass (4.1) und (4.2) äquivalent sind zu den Optimalitätsbedingungen

$$\begin{cases}
A^T \lambda + s = c \\
Ax = b \\
x_i s_i = 0 , i = 1, ..., n \\
x, s \ge 0
\end{cases} (4.3)$$

Idee: Wir stören (4.3) durch ein $\tau > 0$ gemäß

$$\begin{cases}
A^T \lambda + s = c \\
Ax = b \\
x_i s_i = \tau , i = 1, ..., n \\
x, s \ge 0,
\end{cases}$$
(4.4)

lösen (4.4) und lassen $\tau \to 0$ konvergieren.

Die Abbildung $\tau \mapsto (x_{\tau}, \lambda_{\tau}, s_{\tau})$ heißt der zentrale Pfad, wobei $(x_{\tau}, \lambda_{\tau}, s_{\tau})$ eine Lösung von (4.4) ist.

Problem: Sind die zentralen Pfad-Bedingungen (4.4) überhaupt lösbar?

Gegenbeispiel: Das lineare Programm

$$\min x_1 + x_2$$
 u.d.N. $x_1 + x_2 = 0, x_1, x_2 \ge 0$

hat eine Lösung, die zugehörigen zentralen Pfad-Bedingungen (4.4) nicht.

Ausweg: Definiere zu (4.1) bzw. (4.2) logarithmische Barriere-Probleme

$$\min c^T x - \tau \sum_{i=1}^n \log(x_i)$$
 u.d.N $Ax = b, x > 0$ (4.5)

$$\max b^T \lambda + \tau \sum_{i=1}^n \log(s_i) \quad \text{u.d.N} \quad A^T \lambda + s = c , \ s > 0$$
 (4.6)

und zeige:

Hat (4.5) oder (4.6) eine Lösung, so auch die zentralen Pfad-Bedingungen.

Satz 4.1 Sei $\tau > 0$ gegeben. Dann sind äquivalent:

- (a) Das primale Barriere-Problem (4.5) hat eine Lödung x_{τ} .
- (b) Das duale Barriere-Problem (4.6) hat eine Lösung $(\lambda_{\tau}, s_{\tau})$.
- (c) Die zentralen Pfad-Bedingungen (4.4) besitzen eine Lösung $(x_{\tau}, \lambda_{\tau}, s_{\tau})$.

Beweis: Die Funktion $f:\{x\in\mathbb{R}^n:x>0\}\to\mathbb{R}$, $f(x)=c^Tx-\tau\sum_{i=1}^n\log x_i$ ist konvex und $\nabla f(x)=c-\tau X^{-1}e$ mit $X=\mathrm{diag}(x_1,...,x_n)$ und $e=(1,1,...,1)^T\in\mathbb{R}^n$. Das Problem (4.5) ist damit ein konvexes Problem mit linearen Nebenbedingungen.

Korollar 3.17 $\Rightarrow x_{\tau}$ ist genau dann eine Lösung von (4.5), wenn die KKT-Bedingungen erfüllt sind:

$$\nabla f(x_{\tau}) + \sum_{j=1}^{m} \tilde{\lambda}_{j} \nabla h_{j}(x_{\tau}) + \sum_{i=1}^{n} \tilde{\mu}_{i} \nabla g_{i}(x_{\tau}) = 0$$

$$\iff c - \tau X_{\tau}^{-1} e + A^T \tilde{\lambda} = 0$$

da wegen $-x<0\,,\,g_i(x)$ stets inaktiv ist und damit $\tilde{\mu}_i=0\,,\,i=1,...,n$ gilt. Außerdem ist

$$h(x) = 0 \Leftrightarrow Ax = b, x > 0.$$

Definiere $s_{\tau} := \tau X_{\tau}^{-1} e > 0$, $\lambda_{\tau} := -\tilde{\lambda}$.

So erhalten wir insgesamt

$$A^{T}\lambda_{\tau} + s_{\tau} = c$$
 , $Ax_{\tau} = b$, $(x_{\tau})_{i}(s_{\tau})_{i} = \tau$, $s_{\tau}, x_{\tau} > 0$.

Das sind die zentralen Pfad-Bedingungen (4.4) für $(x_{\tau}, \lambda_{\tau}, s_{\tau})$.

 $(b) \Leftrightarrow (c) \text{ ähnlich } !$

Fazit: Um die Existzenz einer Lösung von (4.4) zu beweisen, genügt es die Existenz einer Lösung von (4.5) nachzuweisen.

Wir benötigen dazu noch zwei weitere Bezeichnungen.

Wir nennen

$$\mathcal{F} := \{ (x, \lambda, s) : Ax = b, A^T \lambda + s = c, x, s > 0 \}$$

die primal-dual zulässige Menge und

$$\mathcal{F}^0 := \{ (x, \lambda, s) \in \mathcal{F} : x > 0, s > 0 \}$$

die primal-dual strickt zulässige Menge.

Bemerkung: $\mathcal{F}^0 \neq \emptyset$ ist eine notwendige Bedingung dafür, dass das primale Barriere-Problem eine Lösung hat. Denn ist $(x_{\tau}, \lambda_{\tau}, s_{\tau})$ eine Lösung von (4.4), so gilt offenbar $(x_{\tau}, \lambda_{\tau}, s_{\tau}) \in \mathcal{F}^0$. Wäre $\mathcal{F}^0 = \emptyset$ kann (4.5) nach Satz 4.1 keine Lösung haben.

Diese Bedingung ist auch hinreichend!

Satz 4.2 Sei $\mathcal{F}^0 \neq \emptyset$. Dann besitzt das primale Barriere-Problem (4.5) für jedes $\tau > 0$ eine Lösung.

Beweis: Sei $\tau > 0$ und $(\hat{x}, \hat{\lambda}, \hat{s}) \in \mathcal{F}^0$ gegeben, d.h.

$$\begin{cases} A^T \hat{\lambda} + \hat{s} = c \\ A \hat{x} = b \\ \hat{x}, \hat{s} > 0. \end{cases}$$

$$(4.7)$$

Sei weiter

$$B_{\tau}(x) := c^T x - \tau \sum_{i=1}^{n} \log(x_i),$$

$$\mathcal{L}_{\tau} := \{ x \in \mathbb{R}^n : Ax = b, x \geq 0, B_{\tau}(x) \leq B_{\tau}(\hat{x}) \}.$$

Es zeigt sich, dass aus $B_{\tau}(x) \leq B_{\tau}(\hat{x})$ schon x > 0 folgt.

Wir wollen zeigen: \mathcal{L}_{τ} ist kompakt.

Offenbar: \mathcal{L}_{τ} ist abgeschlossen.

Noch zu zeigen : \mathcal{L}_{τ} ist beschränkt.

Für $x \in \mathcal{L}_{\tau}$ gilt mit (4.7) :

$$B_{\tau} = c^{T}x - \tau \sum_{i=1}^{n} \log(x_{i})$$

$$= c^{T}x - \hat{\lambda}^{T}(Ax - b) - \tau \sum_{i=1}^{n} \log(x_{i})$$

$$= c^{T}x - x^{T}A^{T}\hat{\lambda} + b^{T}\hat{\lambda} - \tau \sum_{i=1}^{n} \log(x_{i})$$

$$= c^{T}x - x^{T}(c - \hat{s}) + b^{T}\hat{\lambda} - \tau \sum_{i=1}^{n} \log(x_{i})$$

$$= x^{T}\hat{s} + b^{T}\hat{\lambda} - \tau \sum_{i=1}^{n} \log(x_{i})$$

$$\leq B_{\tau}(\hat{x})$$

Also:

$$\sum_{i=1}^{n} (\hat{s}_{i} x_{i} - \tau \log(x_{i})) \leq B_{\tau}(\hat{x}) - b^{T} \hat{\lambda} := k$$

wobei k eine Konstante ist.

Die Funktionen $k_i(x_i) := \hat{s}_i x_i - \tau \log(x_i)$ erfüllen

$$\lim_{x_i \to +\infty} k_i(x_i) = \lim_{x_i \to 0^+} k_i(x_i) = +\infty$$

und sind stetig und konvex (also nach unten beschränkt).

Also ist \mathcal{L}_{τ} beschränkt und damit kompakt.

$$\Rightarrow \min B_{\tau}$$
 u.d.N. $x \in \mathcal{L}_{\tau}$

hat eine Lösung $x_{\tau} > 0$. Wegen $x_{\tau} \in \mathcal{L}_{\tau}$ ist dies auch eine Lösung von (4.5).

Satz 4.3 Es sei $\mathcal{F}^0 \neq \emptyset$. Dann besitzen die Bedingungen (4.4) für jedes $\tau > 0$ eine Lösung $(x_{\tau}, \lambda_{\tau}, s_{\tau})$, wobei x_{τ} und s_{τ} eindeutig bestimmt sind. Besitzt A vollen Rang, so ist auch λ_{τ} eindeutig bestimmt.

Beweis: Da $\mathcal{F}^0 \neq \emptyset$ folgt mit Satz 4.2, dass (4.5) eine Lösung x_τ besitzt für alle $\tau > 0$. Daraus folgt wiederum, dass die Bedingungen (4.4) eine Lösung $(x_{\tau}, \lambda_{\tau}, s_{\tau})$ besitzen für alle $\tau > 0$ (Satz 4.1).

Da $B_{\tau}(x) = c^T x - \tau \sum_{i=1}^{n} \log(x_i)$ strikt konvex ist, ist x_{τ} eindeutig bestimmt. $\Rightarrow s_{\tau}$ eindeutig bestimmt wegen $(x_{\tau})_i(s_{\tau})_i = \tau$, i = 1, ..., n.

Besitzt A vollen Rang, so ist auch λ_{τ} eindeutig bestimmt aus $A^T \lambda_{\tau} + s_{\tau} = c$ und zwar ist $\lambda_{\tau} = (AA^T)^{-1} A(c - s_{\tau})$.

Ziel: Anwendung des Newton-Verfahrens auf die zentralen Pfad- Bedingungen (4.4).

Newton-Verfahren: Sei $F \in \mathcal{C}^1(\mathbb{R}^p, \mathbb{R}^p)$ gegeben.

Zu lösen: $F(\omega) = 0$ durch Iterationsverfahren. Ist ω^k gegeben so verwendet man die Linearisierung $F_k(\omega)$ von F um ω^k , d.h

$$F_k(\omega) := F(\omega^k) + F'(\omega^k)(\omega - \omega^k).$$

Die Forderung $F_k(\omega^{k+1}) = 0$ führt zu:

$$\omega^{k+1} := \omega^k - F'(\omega^k)^{-1} F(\omega^k).$$

Also: Ist ω^0 gegeben, so be rechne $\omega^{k+1} := \omega^k + \triangle \omega^k$ mit

$$F'(\omega^k) \triangle \omega^k = -F(\omega^k)$$
.

Häufig setzt man

$$\omega^{k+1} = \omega^k + t_k \triangle \omega^k$$

mit $t_k > 0$.

Hier:

$$F_{\tau}(\omega) := F_{\tau}(x, \lambda, s) := \begin{pmatrix} A^T \lambda + s - c \\ Ax - b \\ XSe - \tau e \end{pmatrix}$$
,

mit $X = diag(x_1, ..., x_n)$, $S = diag(s_1, ..., s_n)$, $e = (1, ..., 1)^T$.

Also: $F_{\tau}(x,\lambda,s) = 0 \Leftrightarrow (x,\lambda,s)$ genügt den Bedingungen (4.4) (bis auf x,s>0) Es ist dann

$$F'_{\tau}(x,\lambda,s) = \begin{pmatrix} 0 & A^T & I \\ A & 0 & 0 \\ S & 0 & X \end{pmatrix} \in \mathbb{R}^{(2n+m)\times(2n+m)} . \tag{4.8}$$

Frage: Wann existiert $F'_{\tau}(x,\lambda,s)^{-1}$?

Satz 4.4 Sei $\omega := (x, \lambda, s) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^n$ ein gegebener Vektor mit x, s > 0. Die Matrix $A \in \mathbb{R}^{m \times n}$ habe vollen Rang. Dann ist $F'_{\tau}(\omega)$ für jedes $\tau > 0$ regulär.

Beweis: Sei $p=(p^{(1)},p^{(2)},p^{(3)})\in\mathbb{R}^n\times\mathbb{R}^m\times\mathbb{R}^n$ gegeben mit

$$F'_{\tau}(x,\lambda,s)p = 0$$
.

Aus (4.8) lesen wir ab:

$$A^T p^{(2)} + p^{(3)} = 0 , (4.9)$$

$$Ap^{(1)} = 0, (4.10)$$

$$Sp^{(1)} + Xp^{(3)} = 0. (4.11)$$

Aus (4.9) und (4.10) erhalten wir

$$0 \, = \, {p^{(1)}}^T A^T p^{(2)} \, + \, {p^{(1)}}^T p^{(3)} \, = \, {p^{(1)}}^T p^{(3)} \, .$$

Aus (4.11) leiten wir ab:

$$p^{(3)} = -X^{-1}Sp^{(1)} (4.12)$$

und somit

$$p^{(1)^T} X^{-1} S p^{(1)} = 0.$$

Da $X^{-1}S$ positiv definit ist, gilt dann

$$p^{(1)} = 0$$

und aus (4.12) folgt $p^{(3)} = 0$.

Da A vollen Rang hat, erhalten wir aus (4.9) schließlich $p^{(2)} = 0$, also p = 0.

Bemerkung: Die Iterierten (x^k, λ^k, s^k) werden stets so bestimmt, dass $x^k, s^k > 0$ gilt.

Innere Punkte-Methode: (vorläufige Version)

Zu gegebenen $\omega^k = (x^k, \lambda^k, s^k)$ und $\tau_k > 0$ löse

$$F'_{\tau_k}(\omega^k) \triangle \omega^k = -F_{\tau_k}(\omega^k),$$

also

$$\begin{pmatrix} 0 & A^T & I \\ A & 0 & 0 \\ S^k & 0 & X^k \end{pmatrix} \begin{pmatrix} \triangle x^k \\ \triangle \lambda^k \\ \triangle s^k \end{pmatrix} = \begin{pmatrix} -A^T \lambda^k - s^k + c \\ -Ax^k + b \\ -X^k S^k e + \tau_k e \end{pmatrix}$$
(4.13)

mit

$$\begin{split} X^k &= \mathrm{diag}(x_1^k,...,x_n^k)\,, \\ S^k &= \mathrm{diag}(s_1^k,...,s_n^k)\,, \\ \omega^{k+1} &:= \omega^k \,+ t_k \bigtriangleup \omega^k \qquad \text{für ein } t_k > 0\,. \end{split} \tag{4.14}$$

Lemma 4.5. Gelten für $\omega^0=(x^0,\lambda^0,s^0)$ die Beziehungen $A^T\lambda^0+s^0=c$, $Ax^0=b$, so folgt schon für alle aus (4.13), (4.14) gewonnenen $\omega^k=(x^k,\lambda^k,s^k)$, dass

$$A^T \lambda^k + s^k = c \quad , \quad Ax^k = b \, .$$

Beweis: Die Behauptung gelte für ein $k \geq 0$. Aus (4.13), 1.Zeile, folgt dann

$$A^T \triangle \lambda^k + \triangle s^k = 0.$$

(4.14) garantiert dann:

$$A^{T}\lambda^{k+1} + s^{k+1} - c = A^{T}(\lambda^{k} + t_{k} \triangle \lambda^{k}) + (s^{k} + t_{k} \triangle s^{k}) - c$$
$$= A^{T}\lambda^{k} + s^{k} - c + t_{k}(A^{T} \triangle \lambda^{k} + \triangle s^{k})$$
$$= 0$$

Unter Verwendung der 2. Zeile von (4.13) erhält man analog:

$$Ax^{k+1} = Ax^k + t_k A \triangle x^k = b.$$

Wählen wir also ein $\omega^0 = (x^0, \lambda^0, s^0)$ aus

$$\mathcal{F}^0 := \{ (x, \lambda, s) : Ax = b, A^T \lambda + s = c, x, s > 0 \}$$

so können wir die rechte Seite von (4.13) durch $(0,0,-X^kS^ke+\tau_ke)$ ersetzen.

ALGORITHMUS: (allgemeine Innere Punkte-Methode)

(S.0) Wähle $\omega^0 := (x^0, \lambda^0, s^0) \in \mathcal{F}^0$, $\varepsilon \in (0, 1)$ und setze k := 0.

(S.1) Ist
$$\mu_k := (x^k)^T s^k / n \le \varepsilon \longrightarrow \text{STOP}$$

(S.2) Wähle $\sigma_k \in [0,1]$ und bestimme die Lösung $\Delta \omega^k := (\Delta x^k, \Delta \lambda^k, \Delta s^k)$ von

$$\begin{pmatrix} 0 & A^T & I \\ A & 0 & 0 \\ S^k & 0 & X^k \end{pmatrix} & \begin{pmatrix} \triangle x^k \\ \triangle \lambda^k \\ \triangle s^k \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -X^k S^k e + \sigma_k \mu_k e \end{pmatrix}.$$

(S.3) Setze

$$\omega^{k+1} := \omega^k + t_k \triangle \omega^k$$
, $k \leftarrow k+1$

und gehe zu (S.1).

 t_k bezeichne eine Schrittweite, die $x^{k+1} > 0$, $s^{k+1} > 0$ garantiert.

Bemerkungen:

a) Aufgrund von Lemma 4.5 und (S.3) ist nur noch die Bedingung

$$(x^k)^T s^k \longrightarrow 0$$
 für $k \to 0$

zu garantieren, um alle Optimalitätsbedingungen (4.3) zu erfüllen. Da $\omega^k \in \mathcal{F}^0$ für alle k gilt, haben wir

$$(x^k)^T s^k = (x^k)^T (c - A^T \lambda^k)$$
$$= c^T x^k - (Ax^k)^T \lambda^k$$
$$= c^T x^k - b^T \lambda^k.$$

Der Ausdruck $(x^k)^T s^k$ ist also die Dualitätslücke, $\mu^k = (x^k)^T s^k/n$ somit die gewichtete Dualitätslücke.

b) Die Wohldefiniertheit des Algorithmus, wenn A vollen Rang hat, wird durch die Existenz eines t_k wie in (S.3) und durch Satz 4.4 garantiert.

c) Der Algorithmus beinhaltet 2 Freiheitsgrade. Die Wahl von t_k und von σ_k . Dabei bedeutet $\sigma_k = 0$ ein Newtonschritt für die Optimalitätsbedingungen (4.3), führt aber zu kleinen Schrittweiten t_k .

 $\sigma_k = 1$ bringt uns weiter von (4.3) weg, läßt aber größere Schrittweiten t_k zu. Das Produkt $\mu_k \sigma_k$ spielt die Rolle von τ_k .

Spezielle Wahlen von t_k, σ_k führen zu Pfad-Verfolgungs-Verfahren.

Nichtlineare Optimierung I: Nichtrestringierte Probleme

5.1 Abstiegsmethoden

Wir betrachten das Problem

$$\min f(x) \tag{5.1}$$

mit $f: \mathbb{R}^n \to \mathbb{R}$ stetig differenzierbar.

Wir nennen (5.1)ein nichtrestringiertes Minimierungsproblem. Sei

$$g(x) := \nabla f(x)$$
.

Betrachte für eine Richtung $d\in\mathbb{R}^n$, ||d||=1, die differenzierbare Funktion $\varphi:\mathbb{R}\to\mathbb{R}$ mit

$$\varphi(t) := f(x+td)$$
.

Dann ist $\varphi'(0) = \nabla f(x)^T d = g(x)^T d$ und $|\varphi'(0)| \leq ||g(x)||$. Demnach wird $\varphi'(0)$ für $d := \frac{g(x)}{||g(x)||}$ maximal und für $d := \frac{-g(x)}{||g(x)||}$ minimal, falls $g(x) \neq 0$ ist.

Da $\varphi'(0)$ die Änderung von f in x beschreibt, ist g(x) die Richtung des steilsten Auf- und -g(x) die Richtung des steilsten Abstiegs.

Ist g(x) = 0, so ist x stationärer Punkt und nach Lemma 3.4 ein Kandidat für ein Minimum.

1.Idee: Sei x^0 gegeben.

Löse

$$x'(t) = -g(x(t))$$
 , $x(0) = x^{0}$.

Längs der Kurve x(t) nehmen die Funktionswerte streng monton mit wachsenden t ab.

Beweis: Ist $\varphi(t) = f(x(t))$, so gilt

$$\varphi'(t) = g(x(t))x'(t) = -\langle g(x), g(x)\rangle \leq 0.$$

Problem: $\lim_{t\to\infty} x(t)$ muß nicht existieren.

2. Idee: Sei $x^0 \in \mathbb{R}^n$ gegeben sowie eine Suchrichtung $s^0 \in \mathbb{R}^n, ||s|| = 1$. Bezeichne

$$\varphi(t) := f(x^0 + ts^0)$$

und untersuche das Verhalten von φ für $t \geq 0$. Ziel ist es ein $\lambda_0 > 0$ zu finden, so dass

$$\varphi(\lambda_0) = f(x^0 + \lambda_0 s^0) < f(x^0) = \varphi(0)$$

46

gilt. Dabei soll garantiert werden, dass λ_0 nicht "zu klein" ist (\rightarrow sonst zu aufwendig).

Iteriere so lang bis $g(x^k) = 0$ für ein $x^k \in \mathbb{R}^n$ gilt.

Da nur die Gerade $x^k + ts^k$ in Betracht gezogen wird, spricht man von line search.

ALGORITHMUS: (line search)

Wähle $0 < c_2 \le c_1 < 1$ (in der Regel $c_1 \le \frac{1}{2}$) und $0 < \gamma \le 1$. Gegeben sei $x^0 \in \mathbb{R}^n$.

Für k = 0, 1, ...

- 1) Ist $g_k := g(x^k) = 0 \rightarrow \text{STOP}$
- 2) Sonst wähle Suchrichtung $s^k \in \mathbb{R}^n$, $||s^k|| = 1$ und $-g_k^T s^k \ge \gamma ||g_k||_2$
- 3) Bestimme eine Schrittweite $\lambda_k > 0$ und $x^{k+1} := x^k + \lambda_k s^k$ so, dass

$$\begin{cases} f(x^{k+1}) \le f(x^k) + \lambda_k c_1 g_k^T s^k \\ g_{k+1}^T s^k \ge c_2 g_k^T s^k \end{cases}$$
 (5.2)

Bemerkungen:

- a) Schritt 2 verlangt, dass der Winkel zwischen s^k und der steilsten Abstiegsrichtung $< 90^{\circ}$ ist. Für $\gamma = 1$ kommt nur $s^k = -g(x^k)/||g(x^k)||$ in Frage.
- b) Der erste Teil von (5.2) garantiert wegen $\lambda_k c_1 g_k^T s^k < 0$, dass

$$f(x^{k+1}) < f(x^k)$$

gilt. Wegen

$$g_{k+1}^T s^k \ge c_2 g_k^T s^k \ge c_1 g_k^T s^k \ge \frac{f(x^{k+1}) - f(x^k)}{\lambda_k} \xrightarrow{\lambda_k \to 0} g_k^T s^k$$

ist der zweite Teil in (5.2) für sehr kleine $\lambda_k>0$ nicht mehr erfüllt $\longrightarrow \lambda_k$ nicht "zu klein".

c) Es wurde offengelassen, wie man λ_k findet. Eine Möglichkeit ist die exakte line search.

$$\lambda_k := \operatorname{argmin} \{ f(x^k + \lambda s^k : \lambda > 0 \}.$$

Satz 5.1 Sei $f \in C^2(\mathbb{R}^n)$, $x^0 \in \mathbb{R}^n$ und $K := \{x : f(x) \leq f(x^0)\}$ kompakt. Dann läßt sich der Algotihmus anwenden und bricht entweder nach endlich vielen Schritten mit einem x^k mit $g(x^k) = 0$ ab, wobei

$$f(x^k) < f(x^{k-1}) < \dots < f(x^0)$$

ist oder erzeugt eine unendliche Folge $\{x^k\}_k$ mit

- 1) $f(x^{k+1}) < f(x^k)$, $k \ge 0$,
- 2) $\{x^k\}_k$ besitzt mindestens einen Häufungspunkt x^* ,
- 3) jeder Häufungspunkt x^* erfüllt $g(x^*) = 0$.

 $Die\ Menge\ K\ hei\beta t\ Niveaumenge.$

CG-Verfahren

Ziel: Abstiegsverfahren "mit Gedächtnis" für konvexe quadratische Funktionen. Also sei

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

mit $A \in \mathbb{R}^{n \times n}$ symmetrisch positiv definit. Dann ist f konvex (Übung).

Definition 5.2. Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch positiv definit. Die Vekroren $s_1, ..., s_m \in \mathbb{R}^n$ heißen A-konjugiert, falls $s_i \neq 0$ für $1 \leq i \leq m$ und $s_i^T A s_i = 0$ für $i \neq j$ gilt.

Bemerkung: A-konjungierte Vektoren $s_i, i = 1, ..., m$, sind stets linear unabhängig. Denn aus $\sum_{i=1}^{m} \alpha_i s_i = 0$ folgt

$$0 = s_k A^T \left(\sum_{i=1}^m \alpha_i s_i \right) = \alpha_k \underbrace{s_k^T A s_k}_{>0}$$

und damit $\alpha_k = 0$, k = 1, ..., m.

Satz 5.3 Die Vektoren $s_0, ..., s_{n-1}$ seien A-konjugirert und $x^0 \in \mathbb{R}^n$ beliebig. Für k = 0, 1, ..., n-1 sei $x^{k+1} := x^k + \lambda_k s_k$ mit

$$\lambda_k := \operatorname{argmin}_{\lambda \in \mathbb{R}} f(x^k + \lambda s_k).$$

Dann gilt

$$f(x^n) = \min_{x \in \mathbb{R}^n} f(x)$$

Beweis: Übung.

Also: x^n ist Optimallösung.

Idee: Verwende A-konjugierte Suchrichtungen.

ALGORITHMUS: (CG-Verfahren)

Es bezeichne $g(x):=\nabla f(x)=Ax+b$ den Gradienten von f. Start: Wähle $x^0\in\mathbb{R}^n$, setze $g_0:=g(x^0)$, $s^0:=-g_0$. Für $i=0,1,\dots$

- 1) Ist $g_i = g(x^i) = 0 \rightarrow \text{STOP}$ x^i ist Minimum von f.
- 2) Sonst setze $x^{i+1} := x^i + \lambda_i s^i$, wobei gilt

$$\lambda_i := \operatorname{argmin}_{\lambda \ge 0} f(x^i + \lambda s^i) = -\frac{g_i^T s_i}{s_i^T A s_i}$$

3) Berechne $\gamma_{i+1} := g_{i+1}^T g_{i+1} / g_i^T g_i$ und setze $s_{i+1} := -g_{i+1} + \gamma_{i+1} s_i$.

Bemerkung: a) λ_i ist wohldefiniert, da $s_i^T A s_i > 0$ gilt für $g_i \neq 0$.

- b) γ_{i+1} wurde gerade so gewählt, dass die Richtungen $s_i, i=0,1,...$ A-konjugiert sind. Nach Satz 5.3 stoppt das Verfahren daher nach endlich vielen Iterationen mit der exakten Lösung (wenn Rundungsfehler unberücksichtigt bleiben).
- c) Man kann zeigen, dass

$$\frac{||x^k - x^*||_A}{||x^0 - x^*||_A} \le 2\left(1 - \frac{2}{\sqrt{\kappa} + 1}\right)^k$$

gilt mit $||x||_A = \sqrt{\langle x, Ax \rangle}$ und $\kappa = ||A||_2 ||A^{-1}||_2$.

5.2 Trust - Region - Verfahren

Wir betrachten wieder das Optimierungsproblem

$$\min_{x \in \mathbb{R}^n} f(x)$$

für ein $f \in \mathcal{C}^2(\mathbb{R}^n)$. Es sei stets

$$g(x) := \nabla f(x)$$
 , $H(x) := \nabla^2 f(x) \in \mathbb{R}^{n \times n}$.

Es sei weiter eine Iterierte x^k gegeben und wieder $g_k = g(x^k), f_k = f(x^k)$.

Es gilt (Taylor-Entwicklung)

$$f(x^k + d) = f(x^k) + g(x^k)^T d + \frac{1}{2} d^T H(x^k) d + O(||d||^3)$$

$$\approx f_k + g_k^T d + \frac{1}{2} d^T B_k d =: \phi_k(d)$$

wobei ||d|| "klein" ist und $B_k = B_k^T \approx H(x^k)$ eine Approximation an die Hesse-Matrix.

Um f in einer Umgebung von x^k zu minimieren, lösen wir jetzt

$$\min_{\|d\|_2 \le \Delta_k} \Phi_k(d) \tag{5.3}$$

für $\Delta_k > 0$. Ist Δ_k klein, so approximiert $\phi_k(d)$ den Wert $f(x^k + d)$ sehr gut und die Lösung von (5.3) ist eine gute Näherung für

$$\min_{||z||_2 \le \Delta_k} f(x^k + z)$$

Der Bereich $\{z: ||z|| \leq \Delta_k\}$ heißt Vertrauensbereich (trust region), das Problem (5.3) ist das Trust-Region Problem.

Idee des Algorithmus:

- s_k sei die Optimallösung von (5.3).
- pred_k := $\Phi_k(0) \Phi_k(s_k)$ = vorhergesagte Verkleinerung beim Übergang von x^k zu $x^k + s_k$.
 ared_k := $f(x^k) f(x^{k+1})$, $x^{k+1} = x^k + s_k$, tatsächliche Verkleinerung

- $r_k := \operatorname{ared}_k / \operatorname{pred}_k$ Maß für die Übereinstimmung.
- Berechne s^k
- Ist r_k "klein", mache Nullschritt und setze $x^{k+1} := x^k$, verkleinere Δ_k .
- Ist r_k "groß", gehe über zu $x^{k+1} = x^k + s_k$ und vergrößere Δ_k .

ALGORITHMUS: (Trust-Region-Verfahren)

Gegeben seien Konstanten $0 < c_3 < c_4 < 1 < c_1$, $0 \le c_0 \le c_2 < 1$ mit $c_2 > 0$ sowie $\varepsilon > 0$.

- 1) Wähle $x^0 \in \mathbb{R}^n$, $B_0 = B_0^T$, $\Delta_0 > 0$, setze k := 0.
- 2) Ist $||g_k|| \leq \varepsilon \rightarrow \text{STOP} \ x^k$ (näherungsweise stationär)
- 3) Bestimme eine Näherungslösung s_k von (5.3).
- 4) Berechne $r_k := \operatorname{ared}_k/\operatorname{pred}_k$ und setze

$$x^{k+1} := \left\{ \begin{array}{ll} x^k &, \text{ falls } r_k \leq c_0 & \text{(Nullschritt)} \\ x^k + s_k \;, \text{ sonst} &. \end{array} \right.$$

Wähle $B_{k+1} = B_{k+1}^T$ und $\Delta_{k+1} > 0$ mit

$$\Delta_{k+1} \in \left\{ \begin{array}{l} [c_3 \, || s_k ||_2 \,,\, c_4 \Delta_k] \;, \; \; \text{falls} \; \, r_k \leq c_2 \\ [\Delta_k \,,\, c_1 \Delta_k] \quad , \; \; \text{sonst} \end{array} \right. .$$

Setze $k \to k+1$.

GOTO 2.

Bemerkungen:

- a) Typische Konstanten sind $c_0=0\,,\,c_1=2\,,\,c_2=c_3=\frac{1}{4}\,,\,c_4=\frac{1}{2}\,.$
- b) Man wird versuchen B_{k+1} durch eine (möglichst einfache) Vorschrift aus B_k zu bestimmen. Hierzu gibt es sogenannte "Update-Verfahren".

Satz 5.4 (Schulz, Schnabel, Byrd, 1985)

Sei $f \in C^2(\mathbb{R}^n)$ und $||\nabla^2 f(x)|| \leq M$ für alle $x \in \mathbb{R}^n$. Sei weiter $c_0 > 0$ und $\varepsilon = 0$ im Algorithmus. Die Näherungslösungen s_k von (5.3) mögen zusätzlich

$$\phi_k(0) - \phi_k(s_k) \ge \tau ||s_k|| \min \left\{ \Delta_k, \frac{||g_k||}{||B_k||} \right\}$$

für ein $\tau > 0$ erfüllen. Weiter seien auch die $B_k = B_k^T$, $k \geq 0$, beschränkt mit $||B_k|| \leq M$ für alle k. Schließlich sei $\inf_k f(x^k) > -\infty$. Dann gilt

$$\lim_{k \to \infty} g(x^k) = 0 ,$$

es ist also jeder Häufungspunkt x^k von $\{x^k\}_k$ stationärer Punkt von f.

5.3 Nichtlineare Ausgleichsprobleme: Gauß– Newton – Verfahren

Es sei jetzt $f \in \mathcal{C}^2(\mathbb{R}^n, \mathbb{R}^m)$,

$$f(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix}$$

 $\min \, m \geq n.$

Für m>n ist die Gleichung f(x)=0 überbestimmt und braucht keine Lösung zu haben.

Idee: Definiere

$$\phi(x) := \frac{1}{2} ||f(x)||_2^2 = \frac{1}{2} \sum_{i=1}^m f_i(x)^2$$

und suche ein x^* mit

$$x^* := \operatorname{argmin}_{x \in \mathbb{R}^n} \phi(x) \,. \tag{5.4}$$

(5.4) ist ein nichtlineares Ausgleichsproblem, "least-squares-Problem".

Notwendige Bedingung für ein Minimum x^*

$$\nabla \phi(x^*) = 0 \quad , \quad \nabla^2 \phi(x^*) \ge 0$$

mit

$$\nabla \phi(x) = J(x)^T f(x)$$
 , $J(x) = Df(x)$,

wobei $J(x) \in \mathbb{R}^{m \times n}$ die Jacobi-Matrix von f ist.

Die Hesse-Matrix hat die Gestalt

$$\nabla^2 \phi(x) = J(x)^T J(x) + B(x) \in \mathbb{R}^{n \times n}$$

mit

$$B(x) = \sum_{i=1}^{m} f_i(x) \nabla^2 f_i(x) \in \mathbb{R}^{n \times n}.$$

Gesucht ist demnach eine Lösung x^* von

$$\nabla \phi(x^*) = J(x^*)^T f(x^*) = 0.$$
 (5.5)

Die Gleichungen (5.5) heißen Normalgleichungen von (5.4).

Bemerkung: Ist f affin linear, also f(x) = Ax - b, $A \in \mathbb{R}^{m \times n}$ so ist Df(x) = A und die Normalgleichungen (5.5) haben die Gestalt

$$A^{T}(Ax - b) = 0 \Leftrightarrow A^{T}Ax = A^{T}b.$$
 (5.6)

Ist Rang(A)=n, so ist A^TA positiv definit und die Lösung von (5.6) ein Minimum von $\phi(x)=\frac{1}{2}||Ax-b||_2^2$ (da $A^TA=\nabla^2\phi(x)$).

Idee zur Lösung von (5.5):

Wende das Newton-Verfahren an mit line search

$$x^{k+1} = x^k + \lambda_k d_k$$

mit

$$d_k := -\nabla^2 \phi(x^k)^{-1} \nabla \phi(x^k).$$

Dabei wird die Schrittweite $\lambda_k > 0$ so bestimmt, dass

$$\phi(x^{k+1}) \approx \min\{\phi(x^k) + \lambda d_k : \lambda > 0\}$$

gilt.

Nachteil: Berechnung von B(x) in $\nabla^2 \phi(x)$ sehr aufwendig!

Ausweg: Ersetze $\nabla^2 \phi(x)$ durch $J(x)^T J(x)$ (und lasse B(x) weg)!

Dies entspricht der Linearisierung von f um x^k , d.h. wir ersetzen f durch

$$F(x) \approx f(x^k) + J(x^k)(x - x^k)$$
 (Taylor).

Denn mit $f_k := f(x^k)$, $J_k := J(x^k)$ und

$$\phi_k(x) := \frac{1}{2} ||f_k + J_k(x - x^k)||^2$$

erhält man

$$\nabla \phi_k(x) = J_k^T (f_k + J_k(x - x^k)),$$

$$\nabla^2 \phi_k(x) = J_k^T J_k.$$

Das Minimum von ϕ_k wird angenommen, falls

$$\nabla \phi_k(x^*) = 0 \quad \Leftrightarrow \quad J_k^T J_k(x^* - x^k) = -J_k^T f_k$$

gilt, also:

$$x^* = x^k + d_k$$
 mit $d_k = -(J_k^T J_k)^{-1} J_k^T f_k$.

Folglich ist

$$J_k^T J_k d_k = -J_k^T f_k$$

und damit die Lösung von

$$\min_{d} \frac{1}{2} ||f_k + J_k d||_2^2$$
.

Das legt folgendes Verfahren nahe:

$$x^{k+1} := x^k + \lambda_k d_k$$
 , $d_k := -(J_k^T J_k)^{-1} J_k^T f_k$

mit $\lambda_k > 0$, so dass

$$\phi(x^{k+1}) \approx \min_{\lambda > 0} \phi(x^k + \lambda d_k).$$

Das ist das $Gau\beta$ -Newton-Verfahren mit line search. Für $\lambda_k=1$, k=0,1,... erhält man das klassische Gauß-Newton-Verfahren.

ALGORITHMUS: (Gauß-Newton-Verfahren mit line search)

Sei $x^0 \in \mathbb{R}$ beliegig.

Für k = 0, 1, ...

- 1) Berechne $d_k := -(J_k^T J_k)^{-1} J_k^T f_k$ mit $J_k = J(x^k), f_k = f(x^k).$
- 2) Bestimme $x^{k+1} := x^k + \lambda_k d_k$, $\lambda_k > 0$, so dass

$$\phi(x^{k+1}) \approx \min_{\lambda > 0} \phi(x^k + \lambda d_k)$$

ist.

52

Satz 5.5 Wird λ_k wie in Satz 5.1 (Abstiegsverfahren) bestimmt, ist $K := \{x : \phi(x) \leq \phi(x^0)\}$ kompakt und $J(x)^T J(x)$ auf K positiv definit, so erzeugt der Algorithmus eine Folge $\{x^k\}_k$, deren Häufungspunkte stationäre Punkte von ϕ sind.

Anmerkung:

Definiert man $\varphi(\lambda) := \phi(x^k + \lambda d_k)$, so ist

$$\varphi'(0) = d_k^T (J_k^T f_k) = -d_k^T J_k^T J_k d_k = -||J_k d_k||^2 < 0$$

da

$$J_k d_k = J_k (J_k^T J_k)^{-1} J_k^T f_k = 0 \quad \Leftrightarrow \quad J_k^T f_k = 0 \quad \Leftrightarrow \quad x^k \text{ station\"{a}rer Punkt von } \phi \,.$$

 $\Rightarrow~d_k$ ist eine Abstiegsrichtung für $\phi.$

Nichtlineare Optimierung II: Restringierte Optimierungsaufgaben:

6.1 Penalty – Methoden

Idee: Behandele ein restringiertes Problem durch Folge unrestringierter Probleme.

Betrachte

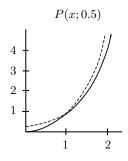
min
$$f(x)$$
 u.d.N. $h_j(x) = 0, j = 1,...,p$ (6.1)

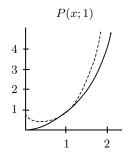
mit $f:\mathbb{R}^n\to\mathbb{R}$, $h:\mathbb{R}^n\to\mathbb{R}^p$ stetig. Definiere eine Penalty-Funktion

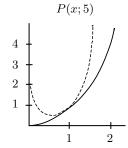
$$P(x;\alpha) := f(x) + \frac{\alpha}{2} ||h(x)||^2.$$

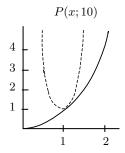
Offenbar: x zulässig $\Rightarrow P(x; \alpha) = f(x)$

Beispiel 6.1 min x^2 u.d.N. $x-1=0 \Rightarrow x^*=1$ ist Lösung.









$$\alpha$$
 klein \Rightarrow min $P(x;\alpha)$ weit weg von min $f(x) = 1$
 α groß \Rightarrow min $P(x;\alpha) \approx 1$

Daher: Konstuiere $\{\alpha_k\}$ streng monoton wachsend und dazu

$$x_k := \operatorname{argmin}_{x \in \mathbb{R}^n} P(x; \alpha_k),$$

ALGORITHMUS: (Penalty-Verfahren)

- 1) Wähle $\alpha_0 > 0$ und setze k := 0.
- 2) Definiere $x_k := \operatorname{argmin}_{x \in \mathbb{R}^n} P(x; \alpha_k)$.
- 3) $h(x_k) = 0 \rightarrow \text{STOP}$
- 4) Bestimme $\alpha_{k+1} > \alpha_k$, setze $k \to k+1$ und gehe zu 1).

Satz 6.2 Seien f, h stetig, $\{\alpha_k\}$ streng monoton wachsend mit $\alpha_k \to \infty$, die zulässige Menge $X := \{x \in \mathbb{R}^n : h(x) = 0\}$ nicht leer und $\{x_k\}$ die durch das Penalty-Verfahren definierte Folge.

- a) Die Folgen $\{P(x^k; \alpha_k)\}, \{f(x_k)\}\$ sind monoton wachsend.
- b) Die Folge $\{||h(x_k)||\}$ ist monoton fallend mit $\lim_{k\to\infty} h(x_k) = 0$.
- c) Jeder Häufungspunkt der Folge $\{x_k\}$ ist eine Lösung von (6.1).

Es gilt offenbar, falls $X \neq \emptyset$ ist:

$$P(x^k; \alpha_k) \le \inf_{x \in X} P(x; \alpha_k) = \inf_{x \in X} f(x) =: f^* < +\infty$$
 (6.2)

und damit

$$f(x^k) \leq P(x^k; \alpha_k) \leq f^*$$
.

Ist x^k zulässig, so gilt natürlich auch

$$f(x^k) \ge f^*$$
 also $f(x^k) = f^*$

und somit ist x^k eine Lösung.

Dies rechtfertigt das Abbruchkriterium in 3).

Seien nun f, $h_j \in \mathcal{C}^1(\mathbb{R}^n)$, j = 1, ..., p. Offenbar gilt

$$0 = \nabla P(x^k; \alpha_k) = \nabla f(x^k) + \alpha_k \sum_{j=1}^p h_j(x^k) \nabla h_j(x^k)$$
 (6.3)

da x^k globales Minimum ist.

Ist $(x^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^p$ ein KKT-Punkt von (6.1), so gilt

$$0 = \nabla f(x^*) + \sum_{j=1}^{p} \mu_j^* \nabla h_j(x^*)$$

Frage: Konvergiert

$$\mu_j^k := \alpha_k h_j(x^k), \qquad j = 1, ..., p,$$
(6.4)

gegen μ_i^* ?

Satz 6.3 Seien $f: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}$ stetig differenzierbar, $\{x^k\}$ eine durch das Penalty-Verfahren erzeugte Folge mit $\lim_{k\to\infty} x^k = x^*$, $\{\nabla h_1(x^*), ..., \nabla h_p(x^*)\}$ seien linear unabhängig und $\{\mu^k\}$ gemä β (6.4) definiert. Dann gilt

a) $\{\mu^k\}$ konvergiert gegen ein $\mu^* \in \mathbb{R}^p$.

b) (x^*, μ^*) mit μ^* aus a) ist ein KKT-Punkt von (6.1), d.h. μ^* ist der wegen Satz 3.22 eindeutig bestimmte Lagrange-Multiplikator zur Lösung x^* von (6.1)

Bemerkungen:

a) Die Probleme

$$x^k = \operatorname{argmin}_{x \in \mathbb{R}^n} P(x; \alpha_k)$$

sind im allgemeinen nicht exakt lösbar.

Außerdem gilt für die Hesse-Matrix $\nabla^2_{xx} P(x^k; \alpha_k)$, daß für $\lim_k \alpha_k = +\infty$ auch

$$\lim_{k \to \infty} ||\nabla_{xx}^2 P(x^k; \alpha_k)||_2 = +\infty$$

ist. \Rightarrow Problem schlecht konditioniert

b) Ein allgemeines Problem

min
$$f(x)$$
 u.d.N. $h(x) = 0, g(x) \le 0$

läßt sich umformulieren in der Gestalt

min
$$f(x)$$
 u.d.N. $h(x) = 0$, max $\{0, g(x)\} = 0$

mit

$$\max\{0, g(x)\} := (\max\{0, g_1(x)\}, ..., \max\{0, g_m(x)\})^T \in \mathbb{R}^m.$$

Die zugehörige Penalty-Funktion lautet

$$P(x,\alpha) := f(x) + \frac{\alpha}{2} ||h(x)||^2 + \frac{\alpha}{2} \sum_{i=1}^{m} \max^2 \{0, g_i(x)\}.$$

6.2 Barriere - Methoden

Problem: Bei Penalty-Verfahren sind die iterierten $\{x^k\}$ i.a. nicht zulässig. Betrachte

$$\min f(x)$$
 u.d.N. $g(x) \le 0$

mit $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^m$.

Die logarithmische Barriere-Funktion

$$B(x;\alpha) := f(x) - \alpha \sum_{i=1}^{m} \ln(-g_i(x))$$

und die inverse Barriere-Funktion

$$B(x;\alpha) := f(x) - \alpha \sum_{i=1}^{m} \frac{1}{g_i(x)}$$

führen zu den Barriere-Verfahren:

- 1) Wähle eine Folge $\{\alpha_k\}$ mit $\lim_{k\to\infty} \alpha_k = 0$.
- 2) Definiere $x^k := \operatorname{argmin}_{x \in \mathbb{R}^n} B(x; \alpha_k)$.

Hier gilt wegen

$$\lim_{z \to 0^{-}} (-\ln(-z)) = \lim_{z \to 0^{-}} \left(-\frac{1}{z}\right) = +\infty$$

stets

$$x^k$$
 ist zulässig $(\Leftrightarrow g(x^k) \leq 0)$.

6.3 Multiplier – Penalty – Methoden

Wir betrachten das Optimierungsproblem

min
$$f(x)$$
 u.d.N. $h(x) = 0$ (6.5)

mit gegebenen Funktionen $f \in \mathcal{C}^2(\mathbb{R}^n)$, $h \in \mathcal{C}^2(\mathbb{R}^n, \mathbb{R}^p)$. Jedes lokale Minimum $x^* \in \mathbb{R}^n$ von (6.5) ist auch lokales Minimum von

min
$$\left\{ f(x) + \frac{\alpha}{2} ||h(x)||^2 \right\}$$
 u.d.N. $h(x) = 0$ (6.6)

für $\alpha > 0$ beliebig. Die Lagrange-Funktionen

$$L_a(x, \mu; \alpha) := f(x) + \frac{\alpha}{2} ||h(x)||^2 + \mu^T h(x)$$

von (6.6) heißt erweiterte Lagrange-Funktion (augmented Lagrangian, Multiplier-Penalty-Funktion).

Lemma 6.4. Es sei $Q^T = Q \in \mathbb{R}^{n \times n}$ positiv semidefinit und $P \in \mathbb{R}^{n \times n}$ symmetrisch positiv definit auf N(Q), d.h.

$$x^T P x > 0$$
 für alle $x \in \mathbb{R}^n \setminus \{0\}$

mit $x \in N(Q)$. Dann existiert ein endliches $\overline{\alpha} > 0$, so dass $P + \alpha Q$ symmetrisch positiv definit ist für alle $\alpha \geq \overline{\alpha}$.

Beweis: Annahme: Zu jedem $k \in \mathbb{N}$ existiert ein $x_k \in \mathbb{R}^n$ mit $x_k \neq 0$ und

$$x_k^T P x_k + k x_k^T Q x_k \leq 0$$
.

Wir können dabei $||x_k|| = 1$ annehmen.

Dann existiert eine Teilfolge $\{x_{k_j}\}_j$ mit $\lim_{j\to\infty} x_{k_j} = x_*$ und $||x_*|| = 1$.

$$\Rightarrow x_*^T P x_* + \lim_{j \to \infty} \sup k_j x_{k_j}^T Q x_{k_j} = \lim_{j \to \infty} \sup (x_{k_j}^T P x_{k_j} + k_j x_{k_j}^T Q x_{k_j}) \le 0.$$
 (6.7)

Wegen $x_{k_j}^T Q x_{k_j} \ge 0$ folgt hieraus

$$x_*^T Q x_* = \lim_{j \to \infty} x_{k_j}^T Q x_{k_j} = 0.$$

- $\Rightarrow x_*$ ist lokales Minimum der Funktion $q(x) = \frac{1}{2}x^TQx$
- $\Rightarrow \nabla q(x_*) = 0$
- $\Rightarrow Qx_* = 0 \Leftrightarrow x_* \in N(Q)$
- $\Rightarrow x_*^T P x_* > 0$ nach Vorraussetung
- \Rightarrow Widerspruch zu (6.7)

Satz 6.5 Es sei (x^*, μ^*) ein KKT-Punkt von (6.5), so dass die hinreichende Optimalitätsbedingung 2. Ordnung aus Satz 3.24 erfüllt ist. Dann existiert ein endliches $\overline{\alpha} > 0$, so dass x^* für jedes $\alpha \geq \overline{\alpha}$ ein striktes lokales Minimum der Funktion $L_a(\cdot, \mu^*; \alpha)$ ist.

Beweis: Mit $L(x, \mu) := f(x) + \mu^T h(x)$ gilt

$$\nabla_x \mathcal{L}_{\alpha}(x, \mu; \alpha) = \nabla_x \mathcal{L}(x, \mu) + \alpha \sum_{j=1}^p h_j(x) \nabla h_j(x),$$

$$\nabla_{xx}^2 \mathcal{L}_{\alpha}(x,\mu;\alpha) = \nabla_{xx}^2 \mathcal{L}(x,\mu) + \alpha \sum_{j=1}^p \left(h_j(x) \nabla^2 h_j(x), + \nabla h_j(x) \nabla h_j(x) \right).$$

Definieren wir $B_* := \nabla h(x_*)^T$, so gilt

$$\nabla_{xx}^2 \mathbf{L}_{\alpha}(x^*, \mu^*; \alpha) = \nabla_{xx}^2 \mathbf{L}(x^*, \mu^*) + \alpha \mathbf{B}_*^T \mathbf{B}_*.$$

Nach Voraussetzuung gilt

$$d^T \nabla^2_{xx} \mathbf{L}(x^*, \mu^*) d > 0 \qquad \forall d \neq 0 \text{ mit } \nabla h_j(x^*)^T d = 0.$$

 $\Rightarrow \nabla_{xx}^2 \mathcal{L}(x^*, \mu^*)$ ist symmetrisch positiv definit auf $N(B_*) = N(B_*^T B_x)$. Nach Lemma 6.4 existiert ein endliches $\overline{\alpha} > 0$, so dass $\nabla_{xx}^2 \mathcal{L}(x^*, \mu^*; \alpha)$ symmetrisch positiv definitist für alle $\alpha \geq \overline{\alpha}$.

Da (x^*, μ^*) ein KKT-Punkt von (6.5) ist, gilt zudem

$$\nabla_x L_{\alpha}(x^*, \mu^*, \alpha) = \nabla_x L(x^* \mu^*) + \alpha \sum_{j=1}^p h_j(x^*) \nabla h_j(x^*) = 0.$$

 $\Rightarrow x^*$ ist striktes, lokales Minimum von $L_{\alpha}(\cdot, \mu^*, \alpha) \ \forall \ \alpha \geq \overline{\alpha}$.

Idee: Löse an Stelle von (6.5) das unrestringierte Problem

$$\min_{x \in \mathbb{R}^n} \, \mathcal{L}_{\alpha}(x, \mu^*; \alpha) \, .$$

Im Gegensatz zu den Penalty-Verfahren muss gemäß Satz 6.4 nun nicht mehr $\alpha \to \infty$ gelten, um ein exaktes Minimum x^* zu erhalten.

Problem: Die Werte μ^* und $\overline{\alpha}$ sind im Allgemeinen nicht bekannt!

Ausweg: Annahme: α sei hinreichend groß, so dass Satz 6.5 anwendbar ist. Gesucht ist eine Approximation μ^k an μ^* .

Sei dazu x^{k+1} Lösung von

$$\min_{x \in \mathbb{R}^n} \, \mathcal{L}_{\alpha}(x, \mu^k; \alpha) \, .$$

58

Dann gilt

$$\begin{split} 0 &= \nabla_x \mathcal{L}_{\alpha}(x^{k+1}, \mu^k; \alpha) \\ &= \nabla f(x^{k+1}) + \sum_{j=1}^p \left(\mu_j^k \, + \, \alpha \, h_j(x^{k+1}) \right) \, \nabla h_j(x^{k+1}) \, . \end{split}$$

Ist (x^*, μ^*) ein KKT-Punkt von (6.5) ist, so gilt

$$0 = \nabla_x L(x^*, \mu^*) = \nabla f(x^*) + \sum_{i=1}^p \mu_j^* \nabla h_j(x^*).$$

Ein Vergleich legt nahe, die Aufdatierung

$$\mu^{k+1} \, := \, \mu^k \, + \, \alpha \, h(x^{k+1})$$

zu verwenden (Hestenes-Powell-Vorschrift). Wir erhalten so das Multiplier-Penalty-Verfahren:

Algorithmus: Multiplier-Penalty-Methode

- (S.0) Wähle $x^0 \in \mathbb{R}^n$, $\mu^0 \in \mathbb{R}^p$, $\alpha_0 > 0$, $c \in (0,1)$ und setze k := 0.
- (S.1) Ist (x^k, μ^k) KKT-Punkt von (6.5) \rightarrow STOP
- (S.2) Bestimme x^{k+1} als Lösung von: $\min_{x \in \mathbb{R}^n} L_a(x, \mu^k; \alpha_k)$.
- (S.3) Setze $\mu^{k+1} := \mu^k + \alpha_k h(x^{k+1})$.
- (S.4) Ist $||h(x^{k+1})|| \ge c ||h(x^k)||$, so setze $\alpha_{k+1} := 10\alpha_k$ ansonsten setze $\alpha_{k+1} := \alpha_k$.
- (S.5) Setze $k \leftarrow k+1$ und gehe zu (S.1).

6.4 SQP-Verfahren

Die SQP (= Sequentielle Quadratische Programmierung) -Verfahren gehören zu den wichtigsten Verfahren der nichtlinearen Optimierung.

6.4.1 Das Newton-Verfahren (reloaded)

Sei $F:\mathbb{R}^n\to\mathbb{R}^n$ stetig differenzierbar. Gesucht ist eine Lösung $x^*\in\mathbb{R}^n$ von

$$F(x) = 0$$
.

Es sei bereits $x^k \approx x^*$ gegeben. Betrachte die lineare Approximation

$$F_k(x) := F(x^k) + F'(x^k)(x - x^k) \approx F(x)$$

mit $F'(x^k) = J_F(x^k) \in \mathbb{R}^{n \times n}$ und bestimme x^{k+1} durch

$$F_k(x^{k+1}) = 0$$

 $\Leftrightarrow F(x^k) + F'(x^k)(x^{k+1} - x^k) = 0$
 $\Leftrightarrow F'(x^k)(x^{k+1} - x^k) = -F(x^k).$

So ergibt sich die Newton-Iteration

$$x^{k+1} = x^k + d^k$$
 , $k = 0, 1, ...$

 $Mit F'(x^k)d^k = -F(x^k).$

Algorithmus: Newton-Verfahren

(S.0) Wähle $x^0 \in \mathbb{R}^n$, setze k := 0.

(S.1) Ist
$$F(x^k) = 0 \rightarrow \text{STOP}$$

(S.2) Bestimme $d^k \in \mathbb{R}^n$ als Lösung des linearen Gleichungssystems

$$F'(x^k) d^k = -F(x^k).$$

(S.3) Setze $x^{k+1} := x^k + d^k$ $k \leftarrow k+1$; gehe zu (S.1).

Bemerkung: Im Allgemeinen bricht das Newton-Verfahren nicht nach endlich vielen Schriten ab. Auf Grund der linearen Approximation ist die Konvergenz im Allgemeinen lokal.

Wie sieht es mit der Konvergenzgeschwindigkeit aus?

Lemma 6.6. (Störungslemma)

Seien $A, B \in \mathbb{R}^{n \times n}$ mit ||I - BA|| < 1. Dann sind A und B regulär und es gilt

$$||B^{-1}|| \le \frac{||A||}{1 - ||I - BA||}.$$

Lemma 6.7. Seien $F: \mathbb{R}^n \to \mathbb{R}^n$ stetig differenzierbar, $x^* \in \mathbb{R}^n$ und $F'(x^*)$ regulär. Dann existziert ein $\varepsilon > 0$, so dass F'(x) für alle $x \in U_{\varepsilon}(x^*) = \{x \in \mathbb{R}^n : ||x - x^*|| < \varepsilon \}$ regulär ist. Ferner gibt es eine Konstante c > 0, so dass

$$||F'(x)^{-1}|| \le c$$

gilt für alle $x \in U_{\varepsilon}(x^*)$.

60

Beweis: Da F' stetig in x^* ist, existiert ein $\varepsilon > 0$ mit

$$||F'(x^*) - F'(x)|| \le \frac{1}{2 ||F'(x^*)^{-1}||}$$

für alle $x \in U_{\varepsilon}(x^*)$.

$$\Rightarrow \|I - F'(x^*)^{-1}F'(x)\| \le \|F'(x^*)^{-1}\| \|F'(x^*) - F'(x)\| \le \frac{1}{2}$$

für alle $x \in U_{\varepsilon}(x^*)$.

Nach Lemma 6.6 ist F'(x) regulär für alle $x \in U_{\varepsilon}(x^*)$ und

$$||F'(x)^{-1}|| \le \frac{||F'(x^*)^{-1}||}{1 - ||I - F'(x^*)^{-1}F'(x)||}$$

$$\le 2||F'(x^*)^{-1}|| =: c$$

Lemma 6.8. Seien $F: \mathbb{R}^n \to \mathbb{R}^n$ und eine Folge $\{x^k\} \subseteq \mathbb{R}^n$ mit $\lim_{k \to \infty} x^k = x^*$ gegeben. Dann gilt

a) Ist F stetig differentierbar, so ist

$$||F(x^k) - F(x^*) - F'(x^k)(x^k - x^*)|| = o(||x^k - x^*||)$$

 $f\ddot{u}r \ k \to \infty$.

b) Ist F stetig differenzierbar und F' lokal Lipschitz-stetig, so gilt

$$||F(x^k) - F(x^*) - F'(x^k)(x^k - x^*)|| = O(||x^k - x^*||^2)$$

 $f\ddot{u}r \ k \to \infty$.

Beweis: a) Es gilt

$$||F(x^k) - F(x^*) - F'(x^k)(x^k - x^*)|| \le ||F(x^k) - F(x^*) - F'(x^*)(x^k - x^*)|| + ||F'(x^*) - F'(x^k)|| ||x^k - x^*||.$$

Da F in x^* differenzierbar ist, gilt

$$||F(x^k) - F(x^*) - F'(x^*)(x^k - x^*)|| = o(||x^k - x^*||)$$

für alle $k \to \infty$.

Da F' in x^* auch stetig ist gilt zudem $\lim_{k\to\infty} \|F'(x^*) - F'(x^k)\| = 0$.

b) Aus dem Mittelwertsatz der Integralrechnung folgt

$$F(x^{k}) - F(x^{*}) - F'(x^{k})(x^{k} - x^{*})$$

$$= \int_{0}^{1} F'(x^{*} + t(x^{k} - x^{*}))(x^{k} - x^{*}) dt - F'(x^{k})(x^{k} - x^{*})$$

$$= \int_{0}^{1} \left[F'(x^{*} + t(x^{k} - x^{*})) - F'(x^{k}) \right] (x^{k} - x^{*}) dt.$$

Für k hinreichend groß folgt aus der lokalen Lipschitz-Stetigkeit von F'

$$||F(x^{k}) - F(x^{*}) - F'(x^{k})(x^{k} - x^{*})||$$

$$\leq \int_{0}^{1} ||F'(x^{*} + t(x^{k} - x^{*})) - F'(x^{k})|| dt ||x^{k} - x^{*}||$$

$$\leq L ||x^{k} - x^{*}|| \int_{0}^{1} ||(t - 1)(x^{k} - x^{*})|| dt$$

$$= \frac{L}{2} ||x^{k} - x^{*}||^{2} = O(||x^{k} - x^{*})||^{2})$$

für $k \to \infty$.

Satz 6.9 (Konvergenz des Newton-Verfahrens)

Seien $F: \mathbb{R}^n \to \mathbb{R}^n$ stetig differenzierbar, $x^* \in \mathbb{R}^n$ mit $F(x^*) = 0$ und $F'(x^*)$ regulär. Dann existiert ein $\varepsilon > 0$, so dass für jedes $x^0 \in U_{\varepsilon}(x^*)$ gilt:

a) Das Newton-Verfahren

$$x^{k+1} = x^k - F'(x^k)^{-1}F(x^k)$$
 $k = 0, 1, ...$

ist wohldefiniert und es gilt $\lim_{k\to\infty} x^k = x^*$.

b) Die Konvergenzrate ist superlinear, d.h.

$$\lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} = 0.$$

c) Ist F' sogar lokal Lipschitz-stetig, so ist die Konvergenzrate quadratisch, d.h.

$$||x^{k+1} - x^*|| = O(||x^k - x^*||^2)$$

 $f\ddot{u}r \ k \to \infty$.

Beweis: Nach Lemma 6.7 existiert ein $\varepsilon_1 > 0$, so dass F'(x) für alle $x \in U_{\varepsilon_1}(x^*)$ regulär ist mit

$$||F'(x)^{-1}|| \le c \quad \forall x \in U_{\varepsilon_1}(x^*)$$

für ein c > 0.

Nach Lemma 6.8 a) existiert ein $\varepsilon_2 > 0$ mit

$$||F(x) - F(x^*) - F'(x)(x - x^*)|| \le \frac{1}{2c} ||x - x^*||$$

für alle $x \in U_{\varepsilon_2}(x^*)$.

Wähle nun $\varepsilon := \min\{\varepsilon_1, \varepsilon_2\}$ und ein $x^0 \in U_{\varepsilon}(x^*)$. Dann ist x^1 wohldefiniert und

$$||x^{1} - x^{*}|| = ||x^{0} - x^{*} - F'(x^{0})^{-1}F(x^{0})||$$

$$\leq ||F'(x^{0})^{-1}|| ||F(x^{0}) - F(x^{*}) - F'(x^{0})(x^{0} - x^{*})||$$

$$\leq c \frac{1}{2c} ||x^{0} - x^{*}|| = \frac{1}{2} ||x^{0} - x^{*}||.$$

 $\Rightarrow x^1 \in U_{\epsilon}(x^*).$

Induktiv folgt: x^k ist wohldefiniert und

$$||x^k - x^*|| \le \left(\frac{1}{2}\right)^k ||x^0 - x^*|| \quad \forall k \in \mathbb{N}$$

 $\Rightarrow \lim_{k\to\infty} x^k = x^*$.

b) Analog zum Beweis von a) erhält man

$$\begin{aligned} \|x^{k+1} - x^*\| &= \|x^k - x^* - F'(x^k)^{-1} F(x^k)\| \\ &\leq \|F'(x^k)^{-1}\| \|F(x^k) - F(x^*) - F'(x^k)(x^k - x^*)\| \\ &\leq c \|F(x^k) - F(x^*) - F'(x^k)(x^k - x^*)\| \,. \end{aligned}$$

Aus Lemma 6.8 folgt dann die Behauptung b) und ebenso c).

Bemerkung: Mit Hilfe des Newton-Verfahrens lassen sich auch unrestringierte Probleme der Form

$$\min f(x)$$
 , $x \in \mathbb{R}^n$

lösen, indem man das Verfahren auf die notwendige Bedingung

$$F(x^*) := \nabla f(x^*) = 0$$

anwendet.

62

6.4.2 Lagrange-Newton-Iteration

Wir betrachten die Minimierung mit Gleichungsrestriktionen

$$\min f(x)$$
 u.d.N $h(x) = 0$,

wobei $f:\mathbb{R}^n\to\mathbb{R}$, $h:\mathbb{R}^n\to\mathbb{R}^p$ zweimal stetig differenzierbar seien. Die Lagrange-Funktion ist gegeben durch

$$L(x, \mu) = f(x) + \sum_{j=1}^{p} \mu_j h_j(x).$$

Die KKT-Bedingungen sind dann gegeben durch

$$\Phi(x,\mu) = 0$$

 $\text{mit } \Phi: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n \times \mathbb{R}^p.$

$$\Phi(x,\mu) = \begin{pmatrix} \nabla_x \mathbf{L}(x,\mu) \\ h(x) \end{pmatrix}$$

und

$$\nabla_x \mathbf{L}(x,\mu) = \nabla f(x) + \sum_{j=1}^p \mu_j \nabla h_j(x).$$

Zu lösen ist also ein nichtlineares Gleichungssystem in (n+p) Variablem (x,μ) . Die entsprechende Newton-Iteration lautet

$$(x^{k+1}, \mu^{k+1}) = (x^k, \mu^k) - \Phi'(x^k, \mu^k)^{-1} \Phi(x^k, \mu^k)$$
 $k = 0, 1, ...$

(Lagrange-Newton-Iteration).

Algorithmus: Lagrange-Newton-Verfahren

- (S.0) Wähle $(x^0, \mu^0) \in \mathbb{R}^n \times \mathbb{R}^p$, setze k := 0.
- (S.1) Ist $\Phi(x^k, \mu^k) = 0 \rightarrow \text{STOP}$
- (S.2) Berechne $(\Delta x^k, \Delta \mu^k)$ als Lösung des linearen Gleichungssystems

$$\Phi'(x^k, \mu^k) \begin{pmatrix} \Delta x \\ \Delta \mu \end{pmatrix} \, = \, -\Phi(x^k, \mu^k) \, .$$

(S.3) Setze $(x^{k+1}, \mu^{k+1}) := (x^k, \mu^k) + (\Delta x^k, \Delta \mu^k)$ $k \leftarrow k+1$; gehe zu (S.1).

Wann ist $\Phi'(x^k, \mu^k)$ regulär?

Satz 6.10 Es sei $(x^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^p$ ein KKT-Punkt des Minimierungsproblems und es gelte

- a) Die Gradienten $\nabla h_1(x^*), ..., \nabla h_p(x^*)$ sind linear unabhängig (LICQ-Bedingung).
- b) Es ist $d^T \nabla^2_{xx} L(x^*, \mu^*) d > 0$ für alle $d \neq 0$ mit $\nabla h_j(x^*)^T d = 0$ für j = 1, ..., p (hinreichende Bedingung 2. Ordnung).

Dann ist die Jacobi-Matrix $\Phi'(x^*, \mu^*)$ regulär.

Beweis: Annahme: $\Phi'(x^*, \mu^*)q = 0$ für ein $q = (q^{(1)}, q^{(2)}) \in \mathbb{R}^n \times \mathbb{R}^p$. Wegen

$$\Phi'(x^*, \mu^*) = \begin{pmatrix} \nabla_{xx}^2 L(x^*, \mu^*) \ h'(x^*)^T \\ h'(x^*) & 0 \end{pmatrix}$$

gilt dann

$$\nabla_{xx}^2 L(x^*, \mu^*) q^{(1)} + \sum_{j=1}^p q_j^{(2)} \nabla h_j(x^*) = 0 \quad \text{und} \quad \nabla h_j(x^*)^T q^{(1)} = 0 \quad j = 1, ..., p$$

$$\Rightarrow q^{(1)T} \nabla_{xx} L(x^*, \mu^*) q^{(1)} + \sum_{j=1}^p q_j^{(2)} \nabla h_j(x^*)^T q^{(1)} = q^{(1)} \nabla_{xx} L(x^*, \mu^*) q^{(1)} = 0$$

$$\stackrel{b)}{\Longrightarrow} q^{(1)} = 0.$$

Hieraus ergibt sich aber auch

$$\sum_{j=1}^{p} q_j^{(2)} \nabla h_j(x^*) = 0$$

$$\stackrel{a)}{\Rightarrow} q_j^{(2)} = 0 \quad , \quad j = 1, ..., p$$

$$\implies q = 0 \quad \Rightarrow \quad \Phi'(x^*, \mu^*) \text{ regulär }.$$

Nach Satz 6.9 konvergiert somit die Lagrange-Newton Iteration für $(x^0,\mu^0)\in U_\epsilon(x^*,\mu^*)$ für ein $\epsilon>0$.

Wie werden zusätzliche Ungleichungsrestriktionen behandelt? Es sei nun

min
$$f(x)$$
 u.d.N. $h(x) = 0, g(x) \le 0$

zu lösen, wobei $f:\mathbb{R}^n\to\mathbb{R}$, $h:\mathbb{R}^n\to\mathbb{R}^p$ und $g:\mathbb{R}^n\to\mathbb{R}^m$ zweimal stetig differenzierbar seien.

Die KKT-Bedingungen lauten nun

$$\nabla_x L(x, \lambda, \mu) = 0$$

$$h(x) = 0$$

$$g_i(x) \le 0 , \ \lambda_i \ge 0 , \ \lambda_i g_i(x) = 0 , \quad i = 1, ..., m$$

mit

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x).$$

Um die KKT-Bedingungen wieder als Nullstellenproblem zu interpretieren benötigen wir die

Definition 6.11. Eine Funktion $\varphi : \mathbb{R}^2 \to \mathbb{R}$ heißt NCP-Funktion (Nonlinear Complementary Problem), falls

$$\varphi(a,b) = 0 \Leftrightarrow a \ge 0, b \ge 0 \text{ und } ab = 0$$

gilt.

Beispiele:

- a) $\varphi(a,b) = 2\min\{a,b\}$,
- b) Fischer-Burmeister-Funktion $\varphi(a,b) = a + b \sqrt{a^2 + b^2}$.

Die KKT-Bedingungen können mit Hilfe einer NCP-Funktion φ umformuliert werden zu

$$\nabla_x L(x, \lambda, \mu) = 0$$

$$h(x) = 0$$

$$\varphi(-g_i(x), \lambda_i) = 0 , \quad i = 1, ..., m.$$

Wir erhalten so das nichtlineare Gleichungssystem

$$\Phi(x,\lambda,\mu) = 0$$

 $_{
m mit}$

$$\Phi(x,\lambda,\mu) = \begin{pmatrix} \nabla_x L(x,\lambda,\mu) \\ h(x) \\ \phi(-g(x),\lambda) \end{pmatrix}$$

und

$$\phi(-g(x),\lambda) = (\varphi(-g_1(x),\lambda_1),...,\varphi(-g_m(x),\lambda_m))^T \in \mathbb{R}^m.$$

Probleme: a) Viele NCP-Funktionen φ sind nicht überall differenzierbar. Zur iterativen Lösung von $\Phi(x, \lambda, \mu) = 0$ werden daher im Allgemeinen nicht glatte Newton-Verfahren verwendet.

b) Das Lagrange-Newton-Verfahren ziehlt generell auf die Berechnung eines KKT-Punktes ab, die Funktion f(x) taucht nur indirekt über $\nabla f(x)$ auf. Daher ist das Verfahren sinnvollerweise nur auf konvexe Probleme anwendbar. Einen Ausweg liefern die SQP-Verfahren.

6.4.3 Das (lokale) SQP-Verfahren

Wir betrachten wieder

$$\min f(x) \qquad \text{u.d.N.} \qquad h(x) = 0,$$

 $f: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^p$ zeimal stetig differenzierbar.

Beim Lagrange-Newton-Verfahren berechneten wir

$$x^{k+1} := x^k + \Delta x^k$$
 , $\mu^{k+1} := \mu^k + \Delta \mu^k$,

wobei $(\Delta x^k, \Delta \mu^k)$ Lösung von

$$\Phi'(x^k, \mu^k) \begin{pmatrix} \Delta x \\ \Delta \mu \end{pmatrix} = -\Phi(x^k, \mu^k)$$

ist. Ausformuliert bedeutet dies

$$H_k \Delta x + h'(x^k)^T \Delta \mu = -\nabla_x L(x^k, \mu^k)$$

$$\nabla h_j(x^k)^T \Delta x = -h_j(x^k) , \quad j = 1, ..., p$$

 $mit H_k := \nabla^2_{xx} L(x^k, \mu^k).$

Es sei nun auch $H_k \approx \nabla^2_{xx} L(x^k, \mu^k)$ zugelassen. Setzen wir $\mu^+ := \mu^k + \Delta \mu$, so folgt

Dies sind die KKT-Bedingungen des quadratischen Optimierungsproblems

$$\min_{\Delta x} \left\{ \nabla f(x^k)^T \Delta x + \frac{1}{2} \Delta x^T H_k \Delta x \right\}$$

u.d.N.
$$h_j(x^k) + \nabla h_j(x^k)^T \Delta x = 0$$
 $j = 1, ..., p$.

In der Tat sind mit $y:=\Delta x$, $F(y):=\nabla f(x^k)^Ty+\frac{1}{2}y^TH_ky$, $H(y):=h(x^k)+\nabla h(x^k)^Ty$ die KKT-Bedingungen von

$$\min_{y} F(y) \quad \text{u.d.N.} \quad H(y) = 0$$

gegeben durch

$$\begin{cases} \nabla F(y) + \sum_{j=1}^{p} \mu_j \nabla H_j(y) = 0 \\ H(y) = 0 \end{cases}$$

was wegen $\nabla F(y) = \nabla f(x^k) + H_k y$ und $\nabla H_j(y) = \nabla h_j(x^k)$ gerade (6.8) entspricht. Diese Beobachtung motiviert nun für das allgemeine Optimierungsproblem

$$\min f(x) \qquad \text{u.d.N.} \qquad g(x) \le 0 \,, \, h(x) = 0$$

das quadratische Teilproblem

$$\begin{cases}
\min_{\Delta x} \nabla f(x^{k})^{T} \Delta x + \frac{1}{2} \Delta x^{T} H_{k} \Delta x \\
\text{u.d.N. } g_{i}(x^{k}) + \nabla g_{i}(x^{k})^{T} \Delta x \leq 0 \\
h_{j}(x^{k}) + \nabla h_{j}(x^{k})^{T} \Delta x = 0 \\
i = 1, ..., m, j = 1, ..., p
\end{cases} (6.9)$$

für die Berechnung von Δx^k zu betrachten, um dann

$$x^{k+1} := x^k + \Delta x^k$$

zu iterieren.

Bemerkung: Das Optimierungsproblem (6.9) entspricht einer quadratischen Approximation der Zielfunktion f(x) und linearisierten Restriktionen bei $x = x^k$ (vgl. Newton-Verfahren!) \rightsquigarrow Sequential Quadratic Programming (SQP).

Algorithmus: SQP-Verfahren

- (S.0) Wähle $(x^0, \lambda^0, \mu^0) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$, $H_0 \in \mathbb{R}^{n \times m}$ symmetrisch, setze k := 0.
- (S.1) Ist (x^k, λ^k, μ^k) KKT-Punkt \rightarrow STOP
- (S.2) Berechne eine Lösung $\Delta x^k \in \mathbb{R}^n$ von $\min \nabla f(x^k)^T \Delta x + \frac{1}{2} \Delta x^T H_k \Delta x$ u.d.N. $g_i(x^k) + \nabla g_i(x^k)^T \Delta x \leq 0$ $h_j(x^k) + \nabla h_j(x^k)^T \Delta x = 0$ i = 1, ..., m, j = 1, ..., p

mit zugehörigem Lagrange-Multiplikatoren $\lambda^{k+1}\,,\,\mu^{k+1}.$

(S.3) Setze $x^{k+1} := x^k + \Delta x^k$ Wähle $H_{k+1} \in \mathbb{R}^{n \times n}$ symmetrisch. Setze $k \leftarrow k+1$; gehe zu (S.1).

Falls $H_k = \nabla_{xx}^2 L(x^k, \lambda^k, \mu^k)$ ist, so sind im Sinne der Lagrange-Newton-Iteration bessere Konvergenzergebnisse zu erwarten. Allerdings muss H_k nicht auf ganz \mathbb{R}^n positiv definit sein; es kann also mehrere KKT-Punkte von (6.9) geben.

Algorithmus: SQP-Verfahren mit $H_k = \nabla^2_{xx} L(x^k, \lambda^k, \mu^k)$

- (S.0) Wähle $(x^0, \lambda^0, \mu^0) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$. Setze k := 0.
- (S.1) Ist (x^k, λ^k, μ^k) KKT-Punkt \rightarrow STOP

(S.2) Berechne mit $H_k = \nabla^2_{xx} L(x^k, \lambda^k, \mu^k)$ einen KKT-Punkt $(x^{k+1}, \lambda^{k+1}, \mu^{k+1})$ von

$$\begin{cases}
\min \nabla f(x^{k})^{T}(x - x^{k}) + \frac{1}{2}(x - x^{k})^{T} H_{k}(x - x^{k}) \\
\text{u.d.N. } g_{i}(x^{k}) + \nabla g_{i}(x^{k})^{T}(x - x^{k}) \leq 0 \\
h_{j}(x^{k}) + \nabla h_{j}(x^{k})^{T}(x - x^{k}) = 0 \\
i = 1, ..., m, j = 1, ..., p
\end{cases} (6.10)$$

Besitzt (6.10) mehrere KKT-Punkte, so wähle $(x^{k+1}, \lambda^{k+1}, \mu^{k+1})$, so dass

$$\|(x^{k+1}, \lambda^{k+1}, \mu^{k+1}) - (x^k, \lambda^k, \mu^k)\|$$

minimal ist.

(S.3) Setze $k \leftarrow k+1$ und gehe zu (S.1).

Satz 6.12 Sei (x^*, λ^*, μ^*) ein KKT-Punkt von

$$\min_{x} f(x)$$
 u.d.N. $g(x) \le 0, h(x) = 0$

mit

- i) $g_i(x^*) + \lambda_i^* \neq 0$ für alle i = 1, ..., m
- ii) Die Gradieten $\nabla g_i(x^*)$, $i \in I(x^*) = \{i : g_i(x^*) = 0\}$ und $\nabla h_j(x^*)$, j = 1, ..., p sind linear unabhänhig (LICQ-Bedingung).
- iii) Es ist $d^T \nabla_{xx} L(x^*, \lambda^*, \mu^*) d > 0$ für alle $d \neq 0$ mit $\nabla h_j(x^*)^T d = 0$, j = 1, ...p und $\nabla g_i(x^*)^T d = 0$, $i \in I(x^*)$.

Dann existiert ein $\varepsilon > 0$, so dass für $(x^0, \lambda^0, \mu^0) \in U_{\varepsilon}(x^*, \lambda^*, \mu^*)$ gilt:

- a) Das SQP-Verfahren ist wohldefiniert und $\lim_{k\to\infty}(x^k,\lambda^k,\mu^k)=(x^*,\lambda^*,\mu^*).$
- b) Die Konvergenzrate ist superlinear.
- c) Sind $\nabla^2 f$, $\nabla^2 g_i$ (i = 1, ..., m) und $\nabla^2 h_j$ (j = 1, ..., p) lokal Lipschitz-stetig, so ist die Konvergenzrate quadratisch.

Bemerkung: a) Die Behauptungen werden plausibel, wenn man folgendes bedenkt: Durch die Forderung i) kann man die in x^* inaktiven Restriktionen vernachlässigen. Das SQP-Verfahren ist daher lokal (mehr oder weniger) äquivalent zum Lagrange-Newton-Verfahren für

min
$$f(x)$$
 u.d.N. $h(x) = 0$, $q_i(x) = 0$, $i \in I(x^*)$.

Unter den Bedingungen ii) iii) erbt dieses das Konvergenzverhalten des Newton-Verfahrenns.

b) In der vorliegenden Form ist das SQP-Verfahren nur lokal konvergent (siehe Satz 6.12). Ein global konvergentes SQP-Verfahren erhält man mit Hilfe der l_1 -Penalty-Funktion

$$P_1(x; \alpha) = f(x) + \alpha \left(\sum_{i=1}^m \max\{0, g_i(x)\} + \sum_{j=1}^p |h_j(x)| \right),$$

da sich die Lösung Δx^k des quadratischen Problems (6.9) mit einer positiv definiten Matrix H_k unter bestimmten Vortraussetzungen als Abstiegsrichtung von $P_1(x;\alpha)$ interpretieren lässt.

Nichtglatte Optimierung

Ziel: Lösungsverfahren für Optimierungsprobleme mit nicht diffenzierbaren Zielfunktionen und Nebenbedingungen.

7.1 Lagrange – Dualität

Wir betrachten das Optimierungsproblem

$$\min f(x)$$
 u.d.N. $x \in X, g(x) \le 0, h(x) = 0$ (7.1)

mit gegebenen $f: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^p$, $g: \mathbb{R}^n \to \mathbb{R}^m$ und $X \subset \mathbb{R}^n$, $X \neq \emptyset$. Es sei weiter

$$L(x, \lambda, \mu) := f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{p} \mu_i h_i(x)$$

die zu (7.1) gehörende Lagrange-Funktion. (Die Restriktion $x \in X$ wurde dabei nicht aufgenommen.)

Der Sattelpunktsatz 3.18 besagt, dass, falls

$$L(x^*, \lambda, \mu) \leq L(x^*, \lambda^*, \mu^*) \leq L(x, \lambda^*, \mu^*)$$

für alle $(x, \lambda, \mu) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$ mit $\lambda \geq 0$ gilt für ein $(x^*, \lambda^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$ mit $\lambda^* \geq 0$, x^* unter bestimmten Bedingungen (siehe Korollar 3.19) eine Lösung von (7.1) mit $X = \mathbb{R}^n$ ist.

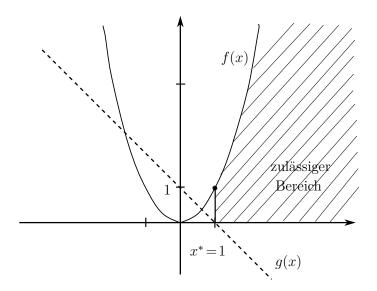
Beispiel: Seien $X=\mathbb{R}$, $f(x)=x^2$, m=1, p=0, g(x)=1-x. (7.1) hat also die Form

$$\min x^2 \qquad \text{u.d.N} \qquad 1 - x \le 0,$$

Lagrange-Funktion

$$L(x,\lambda) = x^2 + \lambda(1-x).$$

Was ist ein Sattelpunkt von L?



Sei $\lambda \in \mathbb{R}$ fest. Minimiere $L(\cdot, \lambda)$:

$$\frac{\partial}{\partial x} L(x, \lambda) = 2x - \lambda \stackrel{!}{=} 0 \quad \Rightarrow \quad x(\lambda) = \frac{\lambda}{2}$$

Maximiere $L(x(\lambda), \lambda)$:

$$\begin{split} &\frac{\partial}{\partial \lambda} \bigg\{ L(x(\lambda), \lambda) \bigg\} = \frac{\partial}{\partial \lambda} \bigg\{ \left(\frac{\lambda}{2} \right)^2 + \lambda \left(1 - \frac{\lambda}{2} \right) \bigg\} = \frac{\partial}{\partial \lambda} \left\{ -\frac{\lambda^2}{4} + \lambda \right\} \\ &= -\frac{\lambda}{2} + 1 \stackrel{!}{=} 0 \quad \Rightarrow \quad \lambda = 2 \end{split}$$

 \Rightarrow $(x^*, \lambda^*) = (1, 2)$ ist ein Sattelpunkt von L.

Diese Betrachtungsweise führt zu

Definition 7.1. Die Funktion

$$q(\lambda,\mu)\,:=\,\inf_{x\in X}\,\mathrm{L}(x,\lambda,\mu)$$

heißt die duale Funktion von (7.1); das Optimierungsproblem

$$\max q(\lambda, \mu)$$
 u.d.N. $\lambda \ge 0, \mu \in \mathbb{R}^p$ (7.2)

heißt das duale Problem (D) zu (7.1). (Lagrange-Dualität)

Bemerkung: Die Restriktionen von (D) sind sehr einfach. Dafür ist jedoch q unter Umständen aufwändig zu berechnen und im Allgemeinen nicht differenzierbar. Es kann vorkommen, dass

$$q(\lambda, \mu) = \inf_{x \in X} L(x, \lambda, \mu) = -\infty$$

ist. Wir definieren daher

$$dom(q) := \{ (\lambda, \mu) \in \mathbb{R}^m \times \mathbb{R}^p : \lambda \ge 0, \, q(\lambda, \mu) > -\infty \}.$$

Beispiele: a) $X = \mathbb{R}^2$ und

$$\min f(x) := x_1^2 - x_2^2$$
 u.d.N. $g(x) := x_1^2 + x_2^2 - 1 \le 0$

$$\Rightarrow q(\lambda) = \inf_{x \in X} L(x, \lambda)$$

$$= \inf_{x \in \mathbb{R}^2} \left\{ x_1^2 - x_2^2 + \lambda(x_1^2 + x_2^2 - 1) \right\}$$

$$= \inf_{x \in \mathbb{R}^2} \left\{ (1 + \lambda)x_1^2 + (-1 + \lambda)x_2^2 - \lambda \right\}$$

$$= \begin{cases} -\infty &, \text{ falls } 0 \le \lambda < 1 \\ -\lambda &, \text{ falls } \lambda \ge 1 \end{cases}$$

$$\Rightarrow \ dom(q) \, = \, [1, +\infty)$$

Duales Problem:

$$\max q(\lambda) \quad \text{u.d.N} \quad \lambda \ge 0$$

\Rightarrow \lambda^* = 1 , \quad q(\lambda^*) = -1

Lösung des primalen Problems:

$$x^* = (0, \pm 1)$$
 , $f(x^*) = -1$

b) Das zum linearen Programm

$$\min c^T x \qquad \text{u.d.N.} \qquad Ax = b \;,\; x \ge 0$$

gehörende duale Programm ist

$$\max b^T \mu$$
 u.d.N. $A^T \mu \le c$.

Beweis als Übung (vergleiche auch Abschnitt 3.2).

Die Ergebnisse in diesem Abschnitt verallgemeinern also die Ergebnisse aus Abschnitt 3.2.

Satz 7.2 (Schwache Dualität)

Ist $x \in \mathbb{R}^n$ zulässig für das primale Problem (P) (7.1) und $(\lambda, \mu) \in \mathbb{R}^m \times \mathbb{R}^p$ zulässig für das duale Problem (D) (7.2), so ist

$$q(\lambda, \mu) \leq f(x)$$
.

Definieren wir weiter

$$\inf(P) := \inf \{ f(x) : x \in X, g(x) \le 0, h(x) = 0 \}$$

$$\sup(D) := \sup \{ g(\lambda, \mu) : \lambda \ge 0, \mu \in \mathbb{R}^p \}$$

so gilt

$$\sup(D) \leq \inf(P)$$
.

Beweis: Nach Voraussetzung gilt

$$q(\lambda, \mu) = \inf_{z \in X} L(z, \lambda, \mu)$$

$$\leq L(x, \lambda, \mu)$$

$$= f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$

$$\leq f(x).$$

Im Gegensatz zu linearen Programmen (vgl. Satz 3.28) können - wie in der Übung gezeigt- durchaus Dualitätslücken auftauchen.

Lemma 7.3. Die duale Funktion q und der Bereich dom(q) besitzen folgende Eigenschaften

- a) dom(q) ist konvex.
- b) Die Funktion $q: dom(q) \to \mathbb{R}$ ist konkav.

Beweis: Für $x \in X$, $(\lambda^1, \mu^1) \in \text{dom}(q)$, $(\lambda^2, \mu^2) \in \text{dom}(q)$, $\alpha \in (0, 1)$ gilt

$$L(x, \alpha\lambda^{1} + (1 - \alpha)\lambda^{2}, \alpha\mu^{1} + (1 - \alpha)\mu^{2}) = f(x) + \sum_{i=1}^{m} \left[\alpha\lambda_{i}^{1} + (1 - \alpha)\lambda_{i}^{2}\right]g_{i}(x)$$

$$+ \sum_{j=1}^{p} \left[\alpha\mu_{j}^{1} + (1 - \alpha)\mu_{j}^{2}\right]h_{j}(x)$$

$$= \alpha L(x, \lambda^{1}, u^{1}) + (1 - \alpha)L(x, \lambda^{2}, \mu^{2})$$

Hieraus folgt

$$\inf_{x \in X} L(x, \alpha \lambda^{1} + (1 - \alpha)\lambda^{2}, \alpha \mu^{1} + (1 - \alpha)\mu^{2})$$

$$\geq \alpha \inf_{x \in X} L(x, \lambda^{1}, \mu^{1}) + (1 - \alpha) \inf_{x \in X} L(x, \lambda^{2}, \mu^{2})$$

$$\Rightarrow q(\alpha \lambda^{1} + (1 - \alpha)\lambda^{2}, \alpha \mu^{1} + (1 - \alpha)\mu^{2})$$

$$\geq \alpha q(\lambda^{1}, \mu^{1}) + (1 - \alpha)q(\lambda^{2}, \mu^{2})$$

Also ist mit $(\lambda^1, \mu^1), (\lambda^2, \mu^2) \in \text{dom}(q)$ auch $(\alpha \lambda^1 + (1 - \alpha)\lambda^2, \alpha \mu^1 + (1 - \alpha)\mu^2) \in \text{dom}(q)$. Also ist dom(q) konvex und q ist auf dom(q) konkav.

Lemma 7.3 besagt, dass das duale Problem

(D)
$$\max q(\lambda, \mu)$$
 u.d.N. $\lambda \ge 0$

ein konkaves Maximierungsproblem und somit

$$\min -q(\lambda, \mu)$$
 u.d.N $\lambda \geq 0$

ein konvexes Minimierungsproblem ist ! Jede lokale Lösing von (D) ist also schon globale Lösung. Dies gilt, auch wenn (P) nicht konvex ist !

Definition 7.4. Wir bezeichnen mit

$$\operatorname{aff}(X) := \bigcap_{V \in U(X)} V \quad , \quad X \subseteq \mathbb{R}^n,$$

wobei $U(X)=\{\, V\subset \mathbb{R}^n\,:\, X\subseteq V\,,\, V\, ist\,\, affiner\,\, Unterraum\,\}\,\, die\,\, affine\,\, H\"{u}lle\,\, von\,\, X\,\, und\,\, mit$

$$\operatorname{rel} \mathring{X} \, := \, \{ \, x \in X \, : \, \exists \, \varepsilon > 0 \, \, \operatorname{mit} \, \, U_{\varepsilon}(x) \cap \operatorname{aff}(X) \, \subseteq X \, \}$$

das relative Innere von X.

Satz 7.5 (Starke Dualität)

Es seien $X \subseteq \mathbb{R}^n$ konvex, $X \neq \emptyset$, $f : \mathbb{R}^n \to \mathbb{R}$, $g_i : \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., m konvex und $h : \mathbb{R}^n \to \mathbb{R}^p$ sei affin linear, d.h. $h_j(x) = b_j^T x - \beta_j$, für $b_j \in \mathbb{R}^n$, $\beta_j \in \mathbb{R}$, j = 1, ..., p. Ist $\inf(P) < \infty$ und gibt es ein $\hat{x} \in \operatorname{rel} \mathring{X}$ mit

$$g_i(\hat{x}) < 0$$
 für $i = 1, ..., m$

und $h(\hat{x}) = 0$ (Slater-Bedingung), so ist das duale Problem lösbar und es gilt die starke Dualität

$$\sup (D) = \inf (P).$$

7.2 Das konvexe Subdifferential

Ziel: Verallgemeinerter Ableitungsbegriff

Bezeichnung: Für $X \subseteq \mathbb{R}^n$ ist die Menge

$$\mathring{X} = \{ x \in X : \exists \varepsilon > 0 \text{ mit } U_{\varepsilon}(x) \subset X \}$$

das Innere von X.

Satz 7.6 Seien $X \subseteq \mathbb{R}^n$ konvex und $f: X \to \mathbb{R}$ eine konvexe Funktion. Dann ist f lokal Lipschitzstetig auf \mathring{X} , d.h. zu jedem $x \in \mathring{X}$ existiert ein $\delta = \delta(x) > 0$ und ein L = L(x) > 0 mit

$$||f(y_1) - f(y_2)|| \le L||y_1 - y_2||$$

 $\forall y_1, y_2 \in U_\delta(x)$.

Wir beweisen nun, dass für jedes konvexe $f:X\subseteq\mathbb{R}^n\to\mathbb{R}$ die Richtungsableitung existiert. Dabei ist die Richtungsableitung von f im Punkt $x\in X$ in Richtung $d\in\mathbb{R}^n$ definiert durch

$$f'(x;d) = \lim_{t\to 0^+} \frac{f(x+td) - f(x)}{t}$$
.

Lemma 7.7. Es seien $X \subseteq \mathbb{R}^n$ offen und konvex und $f: X \to \mathbb{R}$ eine konvexe Funktion und $x \in X$, $d \in \mathbb{R}^n$. Dann gilt

a) Der Differenzenquotient

$$q(t) := \frac{f(x+td) - f(x)}{t}$$

ist monoton fallend für $t \to 0^+$, also $q(t_1) \le q(t_2) \ \forall \ 0 < t_1 < t_2 \ mit \ x + t_2 d \in X$.

b) Die Richtungsableitung von f in x in Richtung d existiert und es gilt

$$f'(x;d) = \inf_{t>0} \frac{f(x+td) - f(x)}{t}.$$

Beweis: a) Seien $0 < t_1 < t_2$ und $x + t_2 d \in X \ (\Rightarrow x + t_1 d \in X)$. Aus der Konvexität von f folgt

$$f(x+t_1d) = f\left(\frac{t_1}{t_2}(x+t_2d) + (1-\frac{t_1}{t_2})x\right) \le \frac{t_1}{t_2}f(x+t_2d) + (1-\frac{t_1}{t_2})f(x)$$

$$\Rightarrow q(t_1) = \frac{f(x+t_1d) - f(x)}{t_1} \le \frac{f(x+t_2d) - f(x)}{t_2} = q(t_2)$$

 $\Rightarrow a$

b) Seien $t,\tau>0$ mit $x-\tau d\in X$ und $x+td\in X$ gegeben. Aus der Konvexität von f folgt nun

$$f(x) = f\left(\frac{t}{t+\tau}(x-\tau d) + \frac{\tau}{t+\tau}(x+t d)\right)$$

$$\leq \frac{t}{t+\tau}f(x-\tau d) + \frac{\tau}{t+\tau}f(x+t d)$$

$$\Rightarrow q(t) = \frac{f(x+t d) - f(x)}{t} \geq \frac{f(x) - f(x-\tau d)}{\tau}$$

$$\Rightarrow q(t) \geq \frac{1}{\tau}(f(x) - f(x-\tau d))$$

für $t\to 0^+$ und nach Teil a) gilt, dass q(t) für $t\to 0^+$ monoton fallend ist. Also existiert $\lim_{t\to 0^+}q(t)=f'(x;d)$ und

$$f'(x;d) = \lim_{t \to 0^+} q(t) = \inf_{t>0} \frac{f(x+td) - f(x)}{t}$$

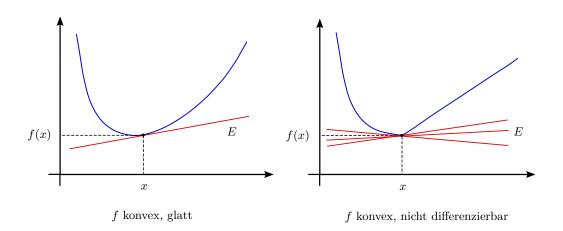
Für konvexe, stetig differenzierbare Funktionen $f:X\subseteq\mathbb{R}^n\to\mathbb{R}$ gilt nach Lemma 3.13 a)

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) \qquad \forall y \in X.$$

Das bedeutet, dass die Tangentialhyperebene durch den Punkt (x, f(x))

$$E = \{ (y, x) \in \mathbb{R}^n \times \mathbb{R} : z = f(x) + \nabla f(x)^T (y - x) \}$$

unterhalb des Graphen von f liegt und es gibt nur diese eine Hyperebene mit dieser Eigentschaft. Ist f in X nicht differenzierbar, kann es unendlich vieler solcher Hyperebenen geben.



Das motiviert die folgende

Definition 7.8. Seien $X \subseteq \mathbb{R}^n$ offen und konvex, $f: X \to \mathbb{R}$ konvex und $x \in X$. Ein Vektor $s \in \mathbb{R}^n$ heißt Subgradient von f in x, wenn

$$f(y) \ge f(x) + s^{T}(y - x) \qquad \forall y \in X$$
(7.3)

 $gilt.\ Die\ Menge$

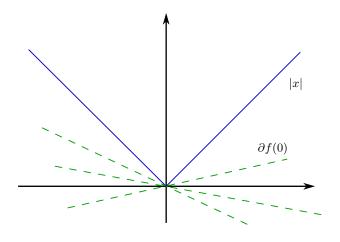
$$\partial f(x) := \{ s \in \mathbb{R}^n : s \text{ erfüllt } (7.3) \}$$

 $hei\beta t$ (konvexes) Subdifferential von f in x.

Beispiel 7.9 $X = \mathbb{R}$, f(x) = |x|.

 $Dann\ ist$

$$\partial f(0) \, = \, \{ \, s \in \mathbb{R} \, : \, |y| \, \geq \, sy \quad \forall \, \, y \in \mathbb{R} \, \} \, = \, [-1,1] \, .$$



Lemma 7.10. Ist f in x differenzierbar, so gilt

$$\partial f(x) = \{ \nabla f(x) \}.$$

Beweis: Ist $s \in \partial f(x)$, so gilt

$$f(x+td) - f(x) \ge ts^T d \quad \forall d \in \mathbb{R}^n$$

und für alle t > 0 mit $x + td \in X$. Daraus folgt

$$\lim_{t \to 0^+} \frac{f(x+td) - f(x)}{t} = \nabla f(x)^T d \ge s^T d$$

für alle $d \in \mathbb{R}^n$.

Setzen wir $d = s - \nabla f(x)$, so ergibt dies

$$\nabla f(x)^{T} (s - \nabla f(x)) \geq s^{T} (s - \nabla f(x))$$

$$\Leftrightarrow 0 \geq ||s^{2}||^{2} - 2s^{T} \nabla f(x) + ||\nabla f(x)||^{2}$$

$$\Leftrightarrow ||s - \nabla f(x)||^{2} = 0$$

$$\Leftrightarrow s = \nabla f(x).$$

Da $\partial f(x) \neq \emptyset$ (Satz 7.11 a)) folgt die Behauptung.

Satz 7.11 (Eigenschaften des Subdifferentials)

Seien $X \subseteq \mathbb{R}^n$ offen und konvex, $f: X \to \mathbb{R}$ konvex und $x \in X$. Dann gilt:

- a) $\partial f(x)$ ist eine nichtleere, konvexe und kompakte Menge.
- b) $\partial f(x) = \{ s \in \mathbb{R}^n : s^T d \le f'(x; d) \ \forall \ d \in \mathbb{R}^n \}.$
- c) $f'(x;d) = \max_{s \in \partial f(x)} s^T d \quad \forall d \in \mathbb{R}^n$.

Beweis: (nur Teile)

- b) Nach Lemma 7.7 b) existiert $f'(x;d) \ \forall d \in \mathbb{R}^n$ und aus dem Beweis von Lemma 7.10 folgt direkt $f'(x;d) \geq s^T d \ \forall d \in \mathbb{R}^n$.
- a) Ist für $x \in X$, $d \in \mathbb{R}^n$, $H_x(d) := \{s \in \mathbb{R}^n : s^T d \leq f'(x;d)\}$ ein abgeschlossener, konverxer Halbraum, so ist wegen

$$\partial f(x) = \bigcap_{d \in \mathbb{R}^n} H_x(d)$$

ebenfalls abgeschlossen und konvex.

Aus b) folgt auch, dass

$$||s||_{\infty} \leq \max_{i=1,\ldots,n} f'(x; \pm e_i)$$

gilt $\forall s \in \partial f(x)$ (wobei $e_i \in \mathbb{R}^n$ der *i*-te Standart Einheitsvektor ist). Demnach ist $\partial f(x)$ auch beschränkt und somit kompakt.

Satz 7.12 (Optimalitätsbedingung)

Seien $X \subseteq \mathbb{R}^n$ offen und konvex, $f: X \to \mathbb{R}$ konvex und $x^* \in X$. Dann sind die folgenden Aussagen äquivalent:

a)
$$f(x) \ge f(x^*) \quad \forall x \in X$$
,

 $b) \ 0 \in \partial f(x^*),$

c)
$$f(x^*;d) \ge 0 \quad \forall d \in \mathbb{R}^n$$
.

Beweis: $a) \Rightarrow c$): Ist x^* ein globales Minimum von f, so gilt

$$f'(x^*; d) = \lim_{t \to 0^+} \frac{f(x^* + td) - f(x^*)}{t} \ge 0 \qquad \forall d \in \mathbb{R}^n$$

 $(c) \Rightarrow (b)$ folgt aus Satz 7.11 b).

 $(b) \Rightarrow a)$ folgt aus der Definition von $\partial f(x)$.

Lemma 7.13. Seien $f: \mathbb{R}^n \to \mathbb{R}$ konvex und $B \subseteq \mathbb{R}^n$ beschränkt. Dann ist die Bildmenge

$$\partial f(B) := \{ s \in \mathbb{R}^n : \exists x \in B \text{ mit } s \in \partial f(x) \}$$

ebenfalls beschränkt.

Beweis: Zu $s \in \partial f(B)$ existiert ein $x_s \in B$ mit

$$f(y) \ge f(x_s) + s^T(y - x_s) \quad \forall y \in \mathbb{R}^n.$$

Wählen wir $y = x_s + \frac{s}{\|s\|}$, so folgt

$$||s|| \le f\left(x_s + \frac{s}{||s||}\right) - f(x_s)$$

Ist $Q_r := \{u \in \mathbb{R}^n : ||u||_{\infty} \le r\}$ ein Quader mit $\{x \in \mathbb{R}^n : \operatorname{dist}(x, B) \le 1\} \subset Q_r$, so folgt die Behauptung, da f nach Satz 7.6 auf jedem Q_r stetig und damit beschränkt ist.

Satz 7.14 Seien $X \subseteq \mathbb{R}^n$ offen und konvex, $f_1, ..., f_r : X \to \mathbb{R}$ konvex und $\alpha_1, ..., \alpha_r > 0$. Dann gilt

$$\partial \left(\sum_{i=1}^r \alpha_i f_i\right)(x) = \sum_{i=1}^r \alpha_i \partial f_i(x) \quad \forall x \in X.$$

Lemma 7.15. Es sei $g: \mathbb{R}^m \to \mathbb{R}$ definiert durch $g(u) = \max_{i=1,...,m} u_i$ Dann gilt

$$g'(u;p) = \max_{i \in I(u)} p_i,$$

wobei $I(u) := \{i \in \{1, ..., m\} : u_i = g(u)\}$ ist.

Beweis: Seien $u, p \in \mathbb{R}^m$. Ist $i \notin I(u)$, so ist $u_i < g(u)$ und somit $u_i + tp_i < g(u + tp)$ für $t \to 0$ hinreichend klein, da g stetig ist. Hieraus folgt

$$g(u+tp) = \max_{i \in I(u)} (u_i + tp_i)$$

und damit

$$\begin{split} \frac{g(u+tp)-g(u)}{t} &= \frac{\max_{i \in I(u)}(u_i+tp_i)-g(u)}{t} \\ &= \max_{i \in I(u)} \frac{(u_i+tp_i)-g(u)}{t} \\ &= \max_{i \in I(u)} \frac{(u_i+tp_i)-u_i}{t} = \max_{i \in I(u)} p_i \,. \end{split}$$

Bezeichnung: Es ist für $a_1, ..., a_k \in \mathbb{R}^n$

$$\operatorname{conv}\{a_1, ..., a_k\} := \left\{ s \in \mathbb{R}^n : s = \sum_{i=1}^k \lambda_i a_i \text{ mit } \lambda_i \ge 0 \quad \forall i \,, \ \sum_{i=1}^k \lambda_i = 1 \right\}$$

die konvexe Hülle der Vektoren $a_1, ..., a_k$.

Satz 7.16 Seien $X \subseteq \mathbb{R}^n$ offen und konvex, $F_i : X \to \mathbb{R}$, i = 1, ..., m konvexe, stetig differenzierbare Funktionen und

$$f(x) := \max_{i=1,\dots,m} F_i(x) \qquad , \quad x \in X$$

sowie $I(x) := \{i \in \{1, ..., m\} : F_i(x) = f(x)\}$ Dann ailt:

- a) $f'(x;d) = \max_{i \in I(x)} \nabla F_i(x)^T d$,
- b) $\partial f(x) = \operatorname{conv} \{ \nabla F_i(x) : i \in I(x) \}$.

Lemma 7.15 und Satz 7.16 sind hilfreich, um Subdifferentiale von Funktionen zu berechnen, die sich als Maximum konvexer oder affin-linearer Funktionen schreiben lassen. Zum Beispiel gilt für $f(x) = \|Ax - b\|_{\infty}$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$:

$$\partial f(x) = \operatorname{conv} \{ \operatorname{sgn}(a_j^T x - b_j) a_j : j \in J(x) \},$$

$$J(x) = \{ j \in \{1, ..., m\} : |a_j^T x - b_j| = f(x) \}.$$

Für die duale Funktion

$$q(\lambda, \mu) = \inf_{x \in X} L(x, \lambda, \mu) = \inf_{x \in X} \left(f(x) + \lambda^T g(x) + \mu^T h(x) \right)$$

gilt, dass -q konvex ist auf dom(q) (Lemma 7.3). Wir können daher den Subgradienten von -q im Funkt (λ, μ) berechnen.

Lemma 7.17. Seien $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^m$ und $h: \mathbb{R}^n \to \mathbb{R}^p$ Funktionen, $X \subseteq \mathbb{R}^n$ und $x = x(\lambda, \mu)$ eine Lösung von

$$\min \ \left(f(x) + \lambda^T g(x) + \mu^T h(x) \right) \qquad \text{u.d.N.} \qquad x \in X$$

(bei festem λ, μ), so ist

$$(-g(x), -h(x)) \in \partial(-g)(\lambda, \mu)$$
.

Beweis: Nach Voraussetzung gilt $q(\lambda, \mu) = f(x) + \lambda^T g(x) + \mu^T h(x)$. Außerdem gilt für alle $\alpha \in \mathbb{R}^n$, $\beta \in \mathbb{R}^p$

$$q(\alpha, \beta) \leq f(x) + \alpha^T g(x) + \beta^T h(x)$$
.

Demnach gilt für alle $(\alpha, \beta) \in \mathbb{R}^m \times \mathbb{R}^p$

$$\begin{aligned}
-q(\alpha, \beta) &\geq -f(x) - \alpha^T g(x) - \beta^T h(x) \\
&= -q(\lambda, \mu) + f(x) + \lambda^T g(x) + \mu^T h(x) - f(x) - \alpha^T g(x) - \beta^T h(x) \\
&= -q(\lambda, \mu) + \begin{pmatrix} -g(x) \\ -h(x) \end{pmatrix}^T \begin{bmatrix} \alpha \\ \beta \end{pmatrix} - \begin{pmatrix} \lambda \\ \mu \end{bmatrix} .
\end{aligned}$$

Also $(-g(x), -h(x)) \in \partial(-q)(\lambda, \mu)$.

7.3 Die Subgradientenmethode

Gegeben sei

$$\min f(x) \qquad \text{u.d.N.} \qquad x \in X \tag{7.4}$$

mit $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ konvex und $\emptyset \neq X \subseteq \mathbb{R}^n$ abgeschlossen und konvex. Dann ist die metrische Projektion $\mathcal{P}_X : \mathbb{R}^n \to X$ mit

$$||x - \mathcal{P}_X(x)||_2 = \min_{y \in X} ||x - y||_2$$

wohldefiniert und

$$\|\mathcal{P}_X(x) - \mathcal{P}_X(y)\| \le \|x - y\| \quad \forall x, y \in \mathbb{R}^n.$$

Ist f differenzierbar , so ist ein mögliches Verfahren zur Lösung von (7.4) das projezierte Abstiegsverfahren

$$x^{k+1} := \mathcal{P}_X(x^k - t_k \nabla f(x^k)) \qquad k = 0, 1, \dots$$

mit Schrittweite $t_k > 0$.

Für nichtglattes, konvexes f ist daher die Subgradientenmethode definiert durch

$$x^{k+1} := \mathcal{P}_X(x^k + t_k d^k) \qquad k = 0, 1, \dots$$

mit $d^k = -s^k/||s^k||$ und einem $s^k \in \partial f(x^k)$.

Problem: Die Richtung d^k ist im Allgemeinen keine Abstiegsrichtung!

Beispiel 7.18 $X = \mathbb{R}^2$, $f(x) = \max\{-x_1, x_1 + 2x_2, x_1 - 2x_2\}$, $x^k = (1, 0)^T$ Nach Satz 7.16 qilt

$$\partial f(x^k) = \operatorname{conv} \{ \nabla F_i(x^k) , i \in I(x^k) \},$$

$$F_1(x) = -x_1 , F_2(x) = x_1 + 2x_2 , F_3(x) = x_1 - 2x_2 ,$$

$$I(x) = \left\{i = \{1, 2, 3\} : F_i(x) = f(x)\right\}.$$

$$f(x^k) = \max\{-1, 1, 1\} = 1$$

$$\Rightarrow I(x^k) = \{2, 3\}$$

$$\Rightarrow \partial f(x^k) = \operatorname{conv}\left\{\begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 1\\-2 \end{pmatrix}\right\}$$

$$\Rightarrow s^k = \begin{pmatrix} 1\\2 \end{pmatrix} \in \partial f(x^k)$$
Wähle
$$d = -\frac{s^k}{\|s^k\|} = -\frac{1}{\sqrt{5}}\begin{pmatrix} 1\\2 \end{pmatrix}$$

$$\Rightarrow f(x^k + t_k d)$$

$$= f\left(\begin{pmatrix} 1\\0 \end{pmatrix} - t_k \begin{pmatrix} 1/\sqrt{5}\\2/\sqrt{5} \end{pmatrix}\right)$$

$$= \max\left\{-1 + t_k \frac{1}{\sqrt{5}}, 1 - \frac{5}{\sqrt{5}}t_k, 1 + \frac{3}{\sqrt{5}}t_k\right\}$$

$$= 1 + \frac{3}{\sqrt{5}}t_k > 1 = f(x) \quad \forall t_k > 0$$

Für das Subgradientenverfahren wird daher eine Hilfsfolge eingeführt.

ALGORITHMUS: (Subgradientenverfahren)

- (S.0) Wähle $x^0 \in X$, berechne $m_0 := f(x^0)$, setze k := 0.
- (S.1) Genügt x^k einem geeigneten Abbruchkriterium $\Rightarrow STOP$
- (S.2) Berechne $s^k \in \partial f(x^k)$, setze

$$d^k := -\frac{s^k}{\|s^k\|} \quad \text{und} \quad$$

$$x^{k+1} := \mathcal{P}_X(x^k + t_k d^k)$$

für eine Schrittweite $t_k > 0$.

- (S.3) Berechne $m_{k+1} := \min\{f(x^{k+1}), m_k\}$.
- (S.4) Setze $k \leftarrow k+1$ und gehe zu (S.1).

Bemerkung: a) Wir dürfen $s^k \neq 0$ annehmen, da $0 \in \partial f(x^k)$ bedeuten würde, dass x^k ein globales Minimum wäre (Satz(7.12) .

b) Das Subgradientenverfahren ist einfach zu implementieren, falls s^k und \mathcal{P}_X einfach zu bestimmen sind.

Satz 7.19 Das konvexe Optimierungsproblem besitze eine nichtleere Lösungsmenge und es sei

$$f^* := \min \{ f(x) : x \in X \}.$$

Seien $\{x^k\}$ und $\{m_k\}$ die vom Subgradientenverfahren erzeugten Folgen und möge für $t_k > 0$ die Bedingungen

$$t_k \searrow 0$$
 und $\sum_{k=0}^{\infty} t_k = +\infty$

gelten. Dann gilt

$$\lim_{k\to\infty} m_k = f^*.$$

Beweis: Nach Konstruktion und Voraussetzung gilt

$$m_{k+1} \le m_k$$
 , $m_k \ge f^*$ $\forall k \in \mathbb{N}_0$

 \Rightarrow $\{m_k\}$ ist konvergent.

Sei $m_* := \lim_{k \to \infty} m_k$. Offenbar ist $m_* \ge f^*$.

Annahme: $m_* > f^*$.

Es seien $\alpha \in \mathbb{R}$ mit $f^* < \alpha < m_*$ und $\mathcal{L}_{\alpha} := \{ x \in \mathbb{R}^n : f(x) \leq \alpha \}.$

Sei nun $\hat{x} \in X$ mit $f(\hat{x}) < \alpha$ beliebig.

Da $f: X \to \mathbb{R}$ konvex ist, ist $\hat{x} \in \mathring{\mathcal{L}}_{\alpha}$ (vgl. Satz 7.6).

 $\Rightarrow \text{ Es gibt ein } \delta > 0 \text{ mit } x \in \mathcal{L}_{\alpha} \text{ für alle } x \in \mathbb{R}^n \text{ mit } ||x - \hat{x}|| \leq \delta.$

Definiere

$$z^k := \hat{x} + \delta \frac{s^k}{\|s^k\|}$$

 $\Rightarrow z^k \in \mathcal{L}_{\alpha} \quad \forall k \in \mathbb{N}.$

Aus $s^k \in \partial f(x^k)$ folgt andererseits

$$f(z^k) > f(x^k) + (s^k)^T (z^k - x^k).$$

Wegen $f(x^k) \geq m_k > \alpha$ folgt daraus

$$(z^k - x^k)^T s^k \le f(z^k) - f(x^k) \le \alpha - m_k < 0.$$

Mit $d^k = -\frac{s^k}{\|s^k\|}$ und $z^k = \hat{x} - \delta d^k$ ergibt dies

$$-(x^k - z^k)^T \frac{s^k}{\|s^k\|} < 0$$

$$\Leftrightarrow (x^k - \hat{x} + \delta d^k)^T d^k < 0$$

$$\Leftrightarrow (x^k - \hat{x})^T d^k < -\delta.$$

Wegen $\|\mathcal{P}_X(x) - \mathcal{P}_X(y)\| \le \|x - y\| \ \forall x, y \in X$ gilt

$$||x^{k+1} - \hat{x}||^2 = ||\mathcal{P}_X(x^k + t_k d^k) - \mathcal{P}_X(\hat{x})||^2$$

$$\leq ||x^k + t_k d^k - \hat{x}||^2$$

$$= ||x^k - \hat{x}||^2 + t_k^2 + 2t_k (x^k - \hat{x})^T d^k$$

$$< ||x^k - \hat{x}||^2 + t_k (t_k - 2\delta).$$

Wegen $t_k \searrow 0$ gibt es ein $k_0 \in \mathbb{N}$ mit $t_k \leq \delta \ \forall k \geq k_0$.

$$\Rightarrow \|x^{k+1} - \hat{x}\|^2 \le \|x^k - \hat{x}\|^2 - \delta t_k \quad \forall k \ge k_0.$$

 \Rightarrow Aufsummieren ergibt

$$\delta \sum_{j=k_0}^r t_j \leq \sum_{j=k_0}^r (\|x^j - \hat{x}\|^2 - \|x^{j+1} - \hat{x}\|^2)$$

$$= \|x^{k_0} - \hat{x}\|^2 - \|x^{r+1} - \hat{x}\|^2$$

$$\leq \|x^{k_0} - \hat{x}\|^2 \quad \forall \ r \geq k_0.$$

Aber:

$$\lim_{r \to \infty} \sum_{j=k_0}^r t_j = +\infty \qquad \text{Widerspruch !}$$

Die Annahme war also falsch.

Problem: Eine mögliche Wahl der Schrittweite ist

$$t_k = \frac{1}{k+1}.$$

Dies führt jedoch im Allgemeinen zu einer sehr langsamen Konvergenz. Ziel ist es daher, eine praktisch brauchbare Wahl von t_k zu finden.

Lemma 7.20. Es sei x^* eine Lösung von (7.4) und $\{x^k\}$ durch das Subgradientenverfahren erzeugt, wobei die Schrittweite t_k die Bedingung

$$0 < t_k < \frac{2(f(x^k) - f(x^*))}{\|s^k\|}$$

erfüllen möge. Dann gilt

$$||x^{k+1} - x^*|| < ||x^k - x^*|| \quad \forall k \in \mathbb{N}.$$

Bemerkung: Die Folge $\{f(x^k)\}$ ist nicht notwendigerweise monoton fallend!

Beweis: von Lemma 7.20

Sei wieder
$$d^k = -\frac{s^k}{\|s^k\|}$$

$$\Rightarrow \|x^k + t_k d^k - x^*\|^2$$

$$= \|x^k - x^*\|^2 - 2t_k (x^* - x^k)^T d^k + t_k^2 \|d^k\|^2$$

$$= \|x^k - x^*\|^2 + 2t_k (x^* - x^k)^T \frac{s^k}{\|s^k\|} + t_k^2 \qquad \forall \ k \in \mathbb{N}.$$

Aus $s^k \in \partial f(x^k)$ folgt

$$(x^* - x^k)^T s^k \leq f(x^*) - f(x^k)$$

$$\Rightarrow \|x^k + t_k d^k - x^*\|^2 \leq \|x^k - x^*\|^2 + 2t_k \frac{f(x^*) - f(x^k)}{\|s^k\|} + t_k^2$$

$$= \|x^k - x^*\|^2 + t_k \left(-2\frac{f(x^k) - f(x^*)}{\|s^k\|} + t_k\right) \quad \forall k \in \mathbb{N}.$$

Für $t_k < \frac{1}{\|s^k\|} 2 (f(x^k) - f(x^*))$ gilt

$$t_k \left(-2 \frac{f(x^k) - f(x^*)}{\|s^k\|} + t_k \right) < 0.$$

$$\Rightarrow \|x^{k} + t_{k}d^{k} - x^{*}\| < \|x^{k} - x^{*}\|$$

$$\Rightarrow \|x^{k+1} - x^{*}\| = \|\mathcal{P}_{X}(x^{k} + t_{k}d^{k}) - \mathcal{P}_{X}(x^{*})\|$$

$$\leq \|x^{k} + t_{k}d^{k} - x^{*}\| < \|x^{k} - x^{*}\|.$$

Bemerkung: Die Bedingung

$$t_k = \frac{f(x^k) - f^*}{\|s^k\|}$$

ist in der Regel nicht implementierbar, da $f^* = f(x^*)$ im Allgemeinen nicht bekannt ist. Kennt man f^* , so ist diese Wahl von t_k oft besser als $t_k = \frac{1}{k+1}$.

Die Konvergenz der Subgradientenmethode ist unter den Bedingungen von Satz 7.19 langsamer als R-linear.

$$(x^k \to x^* \text{ R-linear}: \Leftrightarrow \exists q \in (0,1), c > 0 \text{ mit } ||x^k - x^*|| \leq cq^k \text{ für } k \to \infty.)$$

Ein weiteres Problem besteht darin, ein geeignetes Abbruchkriterium zu finden.

7.4 Schnittebenenmethoden

Wir betrachten wieder das Optimierungsproblem (7.4)

$$\min f(x)$$
 u.d.N. $x \in X$,

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ konvex, $X \subseteq \mathbb{R}^n$ abgeschlossen, konvex, $X \neq \emptyset$.

Annahme: Es sind bereits Iterierte $x^j \in X$, j=1,...,k mit $s^j \in \partial f(x^j)$, j=1,...,k vorhanden.

Es gilt also

$$f(x) \ge f(x^j) + (s^j)^T (x - x^j) \quad \forall j = 1, ..., k$$

und damit

$$f(x) \ge \max_{j=1,\dots,k} \{ f(x^j) + (s^J)^T (x - x^j) \}$$

 \Rightarrow die stückweise lineare Funktion

$$f_k^{SE}(x) := \max_{j=1,\dots,k} \left\{ f(x^j) + (s^j)^T (x - x^j) \right\}$$

kann als untere Approximation an f(x) angesehen werden.

Idee: Ersetze (7.4) durch das Teilproblem

$$\min f_k^{SE}(x) \qquad \text{u.d.N.} \qquad x \in X$$

und bestimme dadurch x^{k+1} .

84

ALGORITHMUS: (Schnittebenenverfahren, cutting plane method)

- (S.0) Wähle $x^0 \in X$, setze k := 0.
- (S.1) Genügt x^k einem geeigneten Abbruchkriterium $\Rightarrow STOP$
- (S.2) Berechne $s^k \in \partial f(x^k)$ und setze

$$f_k^{SE}(x) := \max_{j=1,\dots,k} \left\{ f(x^j) + (s^j)^T (x - x^j) \right\}$$

(S.3) Berechne eine Lösung x^{k+1} von

$$\min f_k^{SE}(x) \qquad u.d.N \qquad x \in X. \tag{7.5}$$

(S.4) Setze $k \leftarrow k+1$ und gehe zu (S.1).

Bemerkung: Die Funktionen f_k^{SE} sind konvex, aber nicht differenzierbar. Es stellt sich also die Frage, ob die Probleme (7.5) einfacher als (7.4) zu lösen sind.

Lemma 7.21. Ein Vektor $x^{k+1} \in \mathbb{R}^n$ löst (7.5) genau dann, wenn $(x^{k+1}, \xi^{k+1}) \in \mathbb{R}^n \times \mathbb{R}$ mit $\xi^{k+1} := f_k^{SE}(x^{k+1})$ eine Lösung des Problems

min
$$\xi$$
 u.d.N. $f(x^j) + (s^j)^T (x - x^j) \le \xi$, $j = 1, ..., k$ (7.6)

ist.

Beweis: " \Rightarrow " Sei x^{k+1} Lösung von (7.5) und $\xi^{k+1} = f_k^{SE}(x^{k+1})$. $\Rightarrow (x^{k+1}, \xi^{k+1})$ ist zulässig für (7.6).

Annahme: (x^{k+1}, ξ^{k+1}) ist nicht optimal für (7.6).

Dann gibt es einen zulässigen Vektor $(\tilde{x}, \tilde{\xi}) \in \mathbb{R}^n \times \mathbb{R}$ für (7.6) mit $\tilde{\xi} < \xi^{k+1}$. Daraus folgt

$$f_k^{SE}(\tilde{x}) \, = \max_{j=1,...,k} \{ f(x^j) + (s^j)^T (\tilde{x} - x^j) \} \, \leq \, \tilde{\xi} \, < \xi^{k+1} = f_k^{SE}(x^{k+1}) \, .$$

Wegen $\tilde{x} \in X$ ist das ein Widerspruch dazu, dass x^{k+1} eine Lösung von (7.5) ist. $'' \Leftarrow ''$ Sei $(x^{k+1}, \xi^{k+1}) \in \mathbb{R}^n \times \mathbb{R}$ eine Lösung von (7.6) mit $\xi^{k+1} = f_k^{SE}(x^{k+1})$. Dann ist x^{k+1} zulässig für (7.5).

Annahme: es gibt ein $\tilde{x} \in X$ mit $f_k^{SE}(\tilde{x}) < f_k^{SE}(x^{k+1})$. Dann gilt für $\tilde{\xi} := f_k^{SE}(\tilde{x})$, dass $(\tilde{x}, \tilde{\xi})$ zulässig für (7.6) ist mit

$$\tilde{\xi} \, = \, f_k^{SE}(\tilde{x}) \, < \, f_k^{SE}(x^{k+1}) \, = \, \xi^{k+1} \, .$$

was einen Widerspruch zur Optimalität von (x^{k+1},ξ^{k+1}) darstellt.

 $\bf Bemerkung:$ a) Wird Xdurch lineare Ungleichungen beschrieben, wie z.B. bei dem dualen Problem

$$\max q(\lambda, \mu)$$
 u.d.N. $\lambda \ge 0, \mu \in \mathbb{R}^p$,

so ist (7.6) ein lineares Optimierungsproblem und daher viel einfacher zu lösen als (7.4).

b) Zur Veranschaulichung der Schnittebenenmethode: In der Iteration k+1 wird die Restriktion

$$\xi \ge f(x^{k+1}) + (s^{k+1})^T (x - x^{k+1})$$

zu (7.6) hinzugefügt. Würde der aktuelle Punkt (x^{k+1}, ξ^{k+1}) mit $\xi^{k+1} = f_k^{SE}(x^{k+1})$ diese Restriktion erfüllen, so ergäbe dies

$$f(x) > f_{k}^{SE}(x) > f_{k}^{SE}(x^{k+1}) = \xi^{k+1} > f(x^{k+1})$$

und x^{k+1} wäre Lösung von (7.4). Durch die neue Restriktion wird demnach vom zulässigen Bereich von (7.6) ein bestimmter Teil abgeschnitten.

Satz 7.22 Jeder Häufungspunkt einer von der Schnittebenenmethode erzeugten Folge $\{x^k\}$ ist eine Lösung des konvexen Optimierungsproblems (7.4).

Beweis: Sei x^* ein Häufungspunkt von $\{x^k\}$ und $\{x^{k_i+1}\}_i$ eine Teilfolge mit $\lim_{i\to\infty}x^{k_i+1}=x^*$. Wegen $x^k\in X$ \forall $k\in\mathbb{N}$ gilt $x^*\in X$, da X abgeschlossen ist.

 $\Rightarrow x^*$ ist zulässig für (7.4). Ferner gilt nach Konstruktion für alle $x \in X$ und $j \in \{0,1,2,...,k\}$:

$$\begin{split} f(x) & \geq f_k^{SE}(x) \geq f_k^{SE}(x^{k+1}) \\ &= \max_{j=0,\dots,k} \{ f(x^j) + (s^j)^T (x^{k+1} - x^j) \} \\ & \geq f(x^j) + (s^j)^T (x^{k+1} - x^j) \,. \end{split}$$

Ersetzen wir k durch k_i und bilden $i \to \infty$, so erhalten wir

$$f(x) > f(x^{j}) + (s^{j})^{T}(x^{*} - x^{j})$$

für alle $x \in X$ und j = 0, 1, 2, ... Ist $\{x^{j_i}\}_i$ eine Teilfolge mit $\lim_{i \to \infty} = x^*$ und bilden wir $i \to \infty$, so folgt schließlich

$$f(x) > f(x^*) \quad \forall x \in X$$

da die Teilfolge der Subgradienten $\{s^{j_i}\}_i$ nach Lemma 7.13 beschränkt ist (da $\{x^{j_i}\}_i$ konvergent und somit beschränkt ist).

Wie sieht eigentlich ein geeignetes Abbruchkriterium aus?

Lemma 7.23. Das Problem (7.4) besitze mindestens eine Lösung. Seien $\{x^k\}$ die vom Schnittebenenverfahren erzeugte Folge und $\xi^{k+1} := f_k^{SE}(x^{k+1})$ Gilt für ein $\varepsilon > 0$

$$f(x^{k+1}) - \xi^{k+1} \le \varepsilon$$

 $so\ folgt$

$$f(x^{k+1}) - f^* \le \varepsilon$$

wobei $f^* = \inf \{ f(x) : x \in X \}$ ist.

Beweis: Sei $x^* \in X$ eine Lösung von (7.4). Dann ist $f^* = f(x^*)$. Wegen $s^j \in \partial f(x^j)$ gilt außerdem

$$f(x^j) + (s^j)^T (x^* - x^j) \le f(x^*) \quad \forall j \in \{0, ..., k\}.$$

86

$$\Rightarrow (x^*,f^*)$$
ist zulässig für (7.6).
Nach Lemma 7.21 ist aber (x^{k+1},ξ^{k+1}) Lösung von (7.6)
$$\Rightarrow \ \xi^{k+1} \leq f^*$$

$$\Rightarrow \ f(x^{k+1}) - f^* \leq f(x^{k+1}) - \xi^{k+1} \leq \varepsilon$$

Lemma 7.23 legt das Abruchkriterium

$$f(x^{k+1}) - \xi^{k+1} \le \varepsilon$$

mit $\xi^{k+1} = f_k^{SE}(x^{k+1})$ nahe (bzw. (x^{k+1}, ξ^{k+1}) Lösung von (7.6)).

Nachteile der Schnittebenenmethode:

a) Die Teilprobleme (7.5) können unlösbar sein. Ausweg: Ersetze die Zielfunktion durch

$$f_k^{SE}(x) + \frac{1}{2\gamma_k} \|x - x^k\|^2$$
.

So gibt es immer eine eindeutig bestimmte Lösung.

- \Rightarrow Proximal-Cutting-Plane-Methode
- b) Nach jeder Iteration wird in (7.6) eine Restriktion hinzugefügt.
 - \Rightarrow Probleme werden immer komplexer.

7.5 Bundle-Methoden

Ein Problem der Subgradientenmethode besteht datin, dass

$$d^k = -\frac{s^k}{\|s^k\|}$$
 mit $s^k \in \partial f(x^k)$

keine Abstiegsrichtung zu sein braucht. Außerdem ist unter Umständen

$$f(x^k + t_k d^k) < f(x^k)$$

nur für sehr kleine $t_k > 0$.

⇒ Lockerung des Subdifferentialbegriffs

Definition 7.24. Seien $f: \mathbb{R}^n \to \mathbb{R}$ konvex, $x \in \mathbb{R}^n$ und $\varepsilon \geq 0$. Die Menge

$$\partial_{\varepsilon} f(x) := \{ s \in \mathbb{R}^n : f(y) \ge f(x) + s^T (y - x) - \varepsilon \quad \forall \ y \in \mathbb{R}^n \}$$

 $hei\beta t \varepsilon$ -Subdifferential von f in x.

Offenbar gilt:

$$\partial f(x) = \partial_0 f(x) ,$$
 $\partial f(x) \subset \partial_{\varepsilon} f(x) \qquad \forall \, \varepsilon \geq 0 .$

Beispiel: $f(x) = |x| \Rightarrow$

$$\partial_{\varepsilon} f(x) \ = \ \begin{cases} \ [-1,1] &, \ |x| \le \frac{\varepsilon}{2} \\ \ [1 - \frac{\varepsilon}{x}, 1] &, \ x > \frac{\varepsilon}{2} \\ \ [-1, -1 - \frac{\varepsilon}{x}] &, \ x < -\frac{\varepsilon}{2} \end{cases}$$

Definition 7.25. Seien $f: \mathbb{R}^n \to \mathbb{R}$ konvex, $x, d \in \mathbb{R}^n$, $\varepsilon \geq 0$. Dann heißt

$$f'_{\varepsilon}(x;d) := \inf_{t>0} \frac{f(x+td) - f(x) + \varepsilon}{t}$$

 $die \ \varepsilon\textsc{-Richtungsableitung} \ von \ f \ in \ x \ in \ Richtung \ d.$

Bemerkung: Man beachte, dass in Definition 7.25 inf nicht durch lim ersetzt werden darf.

Lemma 7.26. Seien $f : \mathbb{R}^n \to \mathbb{R}$ konvex, $x, d \in \mathbb{R}^n$. Dann gilt:

- a) $f'(x;d) = f'_{o}(x;d)$,
- b) $f'(x;d) \leq f'_{\varepsilon}(x;d) \quad \forall \varepsilon \geq 0$. Insbesondere ist $f'_{\varepsilon}(x;d)$ endlich für alle $\varepsilon \geq 0$.

Beweis: Teil a) folgt direkt aus Lemma 7.7. Außerdem gilt

$$f'(x;d) \le \frac{f(x+td)-f(x)}{t} \le \frac{f(x+td)-f(x)+\varepsilon}{t}$$

für alle t > 0 und $\varepsilon \ge 0 \implies b$).

Satz 7.27 Seien $f: \mathbb{R}^n \to \mathbb{R}$ konvex und $x \in \mathbb{R}^n$. Dann gilt

- a) $\partial_{\varepsilon} f(x)$ ist eine nichtleere, konvexe und kompakte Menge.
- b) $\partial_{\varepsilon} f(x) = \{ s \in \mathbb{R}^n : s^T d \leq f'_{\varepsilon}(x; d) \mid \forall d \in \mathbb{R}^n \}.$
- c) $f'_{\varepsilon}(x;d) = \max_{s \in \partial_{\varepsilon} f(x)} s^T d \quad \forall d \in \mathbb{R}^n$.

Satz 7.28 $(\varepsilon-optimale\ Punkte)$

Seien $f: \mathbb{R}^n \to \mathbb{R}$ konvex und $x^* \in \mathbb{R}^n$.

Dann sind äquivalent:

- a) $f(x^*) \leq \inf_{x \in \mathbb{R}^n} f(x) + \varepsilon$, d.h. x^* ist $ein \varepsilon$ -optimaler Punkt.
- b) $0 \in \partial_{\varepsilon} f(x^*)$.

c)
$$f'_{\varepsilon}(x^*;d) \geq 0 \quad \forall d \in \mathbb{R}^n$$
.

Das ε -Subdifferential $\partial_{\varepsilon} f(x)$ enthält Informationen des Subdifferentials $\partial f(y)$ für Punkte y aus einer Umgebung von x.

Satz 7.29 Seien $f: \mathbb{R}^n \to \mathbb{R}$ konvex, $x \in \mathbb{R}^n$ und $\rho > 0$. Dann gibt es ein von x unabhängiges $\varepsilon > 0$ mit

$$\bigcup_{y \in \overline{U_{\rho}(x)}} \partial f(y) \subseteq \partial_{\varepsilon} f(x)$$

Dabei ist $\overline{U_{\rho}(x)} = \{ y \in \mathbb{R}^n : ||x - y|| \le \rho .$

Beweis: Da f nach Satz 7.6 lokal Lipschitz-stetig und $\overline{U_{\rho}(x)}$ kompakt ist, gibt es ein L>0 mit

$$|f(x^1) - f(x^2)| \le L ||x^1 - x^2|| \quad \forall x^1, x^2 \in \overline{U_{\rho}(x)}.$$

Nach Lemma 7.13 ist $\partial f(\overline{U_{\rho}(x)})$ zudem beschränkt, also gibt es ein $\eta > 0$ mit

$$\bigcup_{y \in \overline{U_{\rho}(x)}} \partial f(y) \subseteq \overline{U_{\eta}(0)}.$$

Sei nun $\varepsilon := (L + \eta)\rho$. Dann gilt für alle $y \in \overline{U_{\rho}(x)}$, $s \in \partial f(y)$, $z \in \mathbb{R}^n$:

$$s^{T}(z-x) = s^{T}(z-y) + s^{T}(y-x)$$

$$\leq f(z) - f(y) + s^{T}(y-x)$$

$$= f(z) - f(x) + f(x) - f(y) + s^{T}(y-x)$$

$$\leq f(z) - f(x) + L\|x - y\| + \|s\|\|y - x\|$$

$$\leq f(z) - f(x) + (L+\eta)\rho$$

$$= f(z) - f(x) + \varepsilon$$

 $\Rightarrow s \in \partial_{\varepsilon} f(x)$.

Wir betrachten nun das Problem

$$\min f(x) \quad , \quad x \in \mathbb{R}^n \tag{7.7}$$

für $f: \mathbb{R}^n \to \mathbb{R}$ konvex.

Für die Suchrichtung $d^k \in \mathbb{R}^n$ in

$$x^{k+1} := x^k + t_k d^k$$

gilt bei differenzierbarem f(x) idealerweise $\nabla f(x^k)^T d^k < 0$. Z.B. kann

$$\min \nabla f(x^k)^T d \quad \text{u.d.N.} \quad \|d\| \le 1$$

als Bestimmung für die ideale Suchrichtung dienen. Die Lösung ist

$$d^k = -\frac{\nabla f(x^k)}{\|\nabla f(x^k)\|} .$$

Wegen $\nabla f(x^k)^T d = f'(x^k; d)$ liegt es nahe für nichtglatte f

min
$$f'(x^k; d)$$
 u.d.N. $||d|| \le 1$ (7.8)

als Suchrichtungsproblem zu verwenden.

Satz 7.11 besagt

$$f'(x^k; d) = \max_{s \in \partial f(x^k)} s^T d,$$

wodurch (7.8) übergeht in

$$\min_{\|d\| \le 1} \max_{s \in \partial f(x^k)} s^T d.$$

Da die Mengen $\{d:\|d\|\le 1\}$, $\{s:s\in\partial f(x^k)\}$ nichtleer, konvex und kompakt sind, gilt die Äquivalenz hiervon zu

$$\max_{s \in \partial f(x^k)} \min_{\|d\| \le 1} s^T d. \tag{7.9}$$

Für gegebendes $s \in \partial f(x^k)$ wird $\min\{s^T d : ||d|| \le 1\}$ durch

$$d = -\frac{s}{\|s\|}$$

gelöst. So reduziert sich 7.9 auf

$$\max_{s \in \partial f(x^k)} (-\|s\|) \Leftrightarrow -\min_{s \in \partial f(x^k)} \|s\|.$$

 \Rightarrow Zu finden ist also ein Element aus $\partial f(x^k)$ mit minimaler Norm. Als Suchrichtung wäre also d^k geeignet mit

$$d^k := -g^k$$
 , $g^k := P_{\partial f(x^k)}(0)$.

Bei der Subgradientenmethode war hingegen $d^k \in -\partial f(x^k)$ beliebig! Da das Subdifferential keine Information aus der Nachbarschaft von x^k verwendet, setzen wir

$$g^k := P_{\partial_{\varepsilon} f(x^k)}(0)$$

 $(\partial_{\varepsilon} f(x^k))$ ist nach Satz 7.27 nichtleer, konvex und kompakt).

Lemma 7.30. Seien $f: \mathbb{R}^n \to \mathbb{R}$ konvex, $x^k \in \mathbb{R}^n$ und $\varepsilon \geq 0$. Ist $0 \notin \partial_{\varepsilon f(x^k)}$, so gilt für die Suchrichtung $d^k := -g^k$ mit

$$g^k := \mathcal{P}_{\partial_{\varepsilon} f(x^k)}(0)$$

die Ungleichung

$$\inf_{t>0} f(x^k + t d^k) < f(x^k) - \varepsilon.$$

Beweis: Die metrische Projektion $P_X: \mathbb{R}^n \to X$ lässt sich äquivalent auch durch

$$(P_X(x) - x)^T (y - P_X(x)) \ge 0 \quad \forall y \in X$$

ausdrücken. Demnach gilt

$$(g^k - 0)^T (s - g^k) \ge 0 \qquad \forall s \in \partial_{\varepsilon} f(x^k),$$

 $\Leftrightarrow (g^k)^T g^k \le s^T g^k \qquad \forall s \in \partial_{\varepsilon} f(x^k).$

Aus $d^k = -g^k$ folgt dann

$$(g^k)^T d^k \geq s^T d^k \qquad \forall s \in \partial_{\varepsilon} f(x^k).$$

Mit Satz 7.27 erhält man

$$f'_{\varepsilon}(x^k; d^k) = \max_{s \in \partial_{\varepsilon} f(x^k)} s^T d^k \le (g^k)^T d^k = -\|g^k\|^2 < 0,$$

da nach Vorraussetzung $0 \notin \partial_{\varepsilon} f(x^k)$. Also gibt es ein $t_k > 0$ mit

$$\frac{f(x^k + t_k d^k) - f(x^k) + \varepsilon}{t_k} < 0$$

$$\Rightarrow \inf_{t>0} f(x^k + t d^k) \le f(x^k + t_k d^k) < f(x^k) - \varepsilon.$$

ALGORITHMUS: (ε -Subdifferential-Verfahren)

- (S.0) Wähle $x^0 \in \mathbb{R}^n$, $\varepsilon > 0$, setze k := 0.
- (S.1) Genügt x^k einem Abbruchkriterium $\Rightarrow STOP$
- (S.2) Berechne $g^k := P_{\partial_{\varepsilon} f(x^k)}(0)$ und setze $d^k := -g^k$.
- (S.3) Berechne $t_k > 0$ mit $f(x^k + t_k d^k) = \min_{t>0} f(x^k + t d^k).$
- (S.4) Setze $x^{k+1} := x^k + t_k d^k$, $k \leftarrow k+1$ und gehe zu (S.1).

Satz 7.31 (Konvergenzeigenschaft)

Sei $f: \mathbb{R}^n \to \mathbb{R}$ konvex und $f^* := \inf_{x \in \mathbb{R}^n} f(x)$ endlich. Dann gibt es ein $k_0 \in \mathbb{N}_0$

$$f(x^{k_0}) \le \inf_{x \in \mathbb{R}^n} f(x) + \varepsilon$$

 x^{k_0} ist also ein ε -optimaler Punkt.

Beweis: Da $f(x) \ge f^* > -\infty$ (nach Vorraussetzung) und nach Lemma 7.30

$$f(x^{k+1}) < f(x^k) - \varepsilon$$

gilt, muss das Verfahren nach endlich vielen Schritten abbrechen.

Problem: Das ε -Subdifferential $\partial_{\varepsilon} f(x^k)$ muss vollständig bekannt sein. Dies ist nicht der Fall und die Berechnung von g^k im Allgemeinen sehr aufwändig.

Gesucht: Geeignete Approximation von $\partial_{\varepsilon} f(x^k)$.

Gemäß Satz 7.29 kann $\partial_{\varepsilon} f(x^k)$ durch $s \in \partial f(y)$ für $y \in \overline{U_{\rho}(x^k)}$ approximiert werden.

Idee: Verwende den neu zu berechnenden Subgradienten $s^k \in \partial f(x^k)$ und die bereits vorhandenen $s^j \in \partial f(x^j)$, j = 0, 1, ..., k-1, um $\partial_{\varepsilon} f(x^k)$ mit diesem Bündel (engl. bundle) an Informationen zu approximieren.

Seien hierzu λ_j Zahlen mit $\lambda_j \geq 0$, j = 0, ..., k, und $\sum_{j=0}^k \lambda_j = 1$. Wegen $s^j \in \partial f(x^j)$ gilt für den Linearisierungsfehler

$$\alpha_i^k := f(x^k) - f(x^j) - (s^j)^T (x^k - x^j)$$

für j = 0, ..., k offenbar

$$\alpha_j^k \ge 0, j = 0, ..., k, \text{ und } \alpha_k^k = 0.$$

Für $x \in \mathbb{R}^n$ und j = 0, ..., k gilt

$$(s^{j})^{T} (x - x^{k}) = (s^{j})^{T} (x - x^{j}) - (s^{j})^{T} (x^{k} - x^{j})$$

$$\leq f(x) - f(x^{j}) - (s^{j})^{T} (x^{k} - x^{j})$$

$$= f(x) - f(x^{k}) + \alpha_{j}^{k}$$

$$\Rightarrow \sum_{j=0}^{k} \lambda_{j} (s^{j})^{T} (x - x^{k}) \leq f(x) - f(x^{k}) + \sum_{j=0}^{k} \lambda_{j} \alpha_{j}^{k} \quad \forall x \in \mathbb{R}^{n}$$

$$\Rightarrow \sum_{j=0}^{k} \lambda_{j} s^{j} \in \partial_{\varepsilon} f(x^{k}), \text{ falls } \sum_{j=0}^{k} \lambda_{j} \alpha_{j}^{k} \leq \varepsilon \text{ ist.}$$

Sei daher

$$G_{\varepsilon}^{k} \; := \; \left\{ \; \sum_{j=0}^{k} \lambda_{j} s^{j} \; : \; \sum_{j=0}^{k} \lambda_{j} \alpha_{j}^{k} \; \leq \; \varepsilon \; , \; \lambda_{j} \geq 0 \; , \; \sum_{j=0}^{k} \lambda_{j} = 1 \, , \; j = 0, ..., k \; \right\}$$

Es ist $G_{\varepsilon}^{k} \neq \emptyset$ konvex und kompakt. Wir haben bewiesen, dass

$$G_{\varepsilon}^k \subseteq \partial_{\varepsilon} f(x^k)$$

gilt. G_{ε}^k kann daher als innere Approximation an $\partial_{\varepsilon}f(x^k)$ angesehen werden. Es liegt daher nahe

$$g^k := P_{G^k_{\varepsilon}}(0)$$

zu setzen.

Den Vektor $(\lambda_0^k, ..., \lambda_k^k) \in \mathbb{R}^{k+1}$, der

$$g^k = \sum_{j=0}^k \lambda_j^k s^j$$

festlegt, kann mit dem folgenden quadratischen Problem berechnet werden.

$$\left\{ \min \left\{ \frac{1}{2} \left\| \sum_{j=0}^{k} \lambda_{j} s^{j} \right\|^{2} + \sum_{j=0}^{k} \lambda_{j} \alpha_{j}^{k} \right\} \quad \text{u.d.N.} \quad \sum_{j=0}^{k} \lambda_{j} = 1, \ \lambda_{j} \geq 0, \ j = 0, ..., k \right\}$$

ALGORITHMUS: (ε -Bundle-Verfahren)

(S.0) Wähle
$$x^1 \in \mathbb{R}^n$$
, $s^1 \in \partial f(x^1)$, $\sigma \in (0,1)$.
Setze $y^1 := x^1$, $g^0 := s^1$, $\alpha_1^1 := \varepsilon_0 := 0$, $k := 1$, $K := \emptyset$, $J_k = \{1\}$

(S.1) Berechne λ_j^k , $j \in J_k$ durch

$$\left\{ \min \left\{ \frac{1}{2} \left\| \sum_{j \in J_k} \lambda_j s^j \right\|^2 + \sum_{j \in J_k} \lambda_j \alpha_j^k \right\} \quad \text{u.d.N.} \quad \sum_{j \in J_k} \lambda_j = 1 , \ \lambda_j \ge 0 , \ j \in J_k \right\}$$

(S.2) Setze

$$g^{k} := \sum_{j \in J_{k}} \lambda_{j}^{k} s^{j} ,$$

$$\varepsilon_{k} := \sum_{j \in J_{k}} \lambda_{j}^{k} \alpha_{j}^{k} ,$$

$$d^{k} := -g^{k} ,$$

$$\xi^{k} := -\|g^{k}\|^{2} - \varepsilon_{k} .$$

- (S.3) Ist $\xi^k = 0 \implies \text{STOP}$
- (S.4) Setze $y^{k+1}:=x^k+d^k$ und berechne $s^{k+1}\in\partial f(y^{k+1})$. Falls $f(x^k+d^k)\leq f(x^k)+\sigma\xi^k$, so setze

$$t_k := 1$$

$$x^{k+1} := x^k + d^k$$

$$K \leftarrow K \cup \{k\}$$

 $\text{ andernfalls setze } \ t_k \, := \, 0 \quad , \quad x^{k+1} \, := \, x^k.$

(S.5) Setze

$$\begin{split} J_k^p \; &:= \; \left\{ \, j \in J_k \; : \; \lambda_j^k > 0 \, \right\}, \\ J_{k+1} \; &:= \; J_k^p \, \cup \, \left\{ k+1 \right\}, \\ \alpha_j^{k+1} \; &:= \; f(x^{k+1}) - f(y^j) - (s^j)^T (x^{k+1} - y^j) \qquad \text{für } j \in J_{k+1} \, . \end{split}$$

(S.6) Setze $k \leftarrow k+1$, gehe zu (S.1).