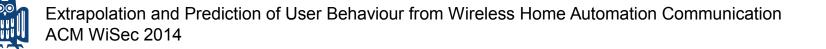
Extrapolation and Prediction of User Behaviour from Wireless Home Automation Communication

Frederik Möllers Sebastian Seitz Andreas Hellmann Christoph Sorge

juris-Stiftungsprofessur für Rechtsinformatik Universität des Saarlandes

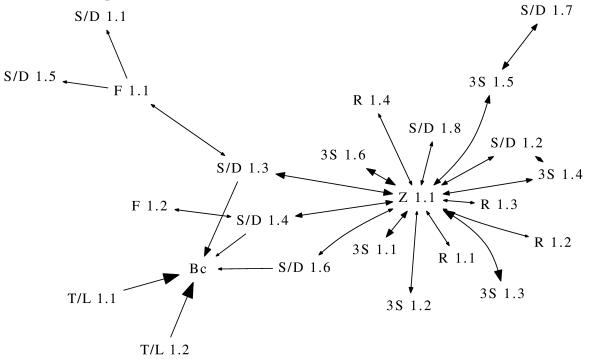

(Wireless) Home Automation

- System performs everyday tasks
 - Locking doors, regulating heating and lighting, controlling blinds ...

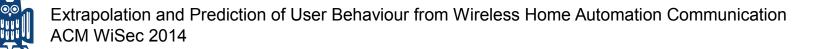
- Remote control and full automation
- Increasingly popular: Wireless systems
 - Benefits: Low installation effort/cost, no structural changes required
 - But: Wireless network everyone can listen and send
 - Do state-of-the art systems use encryption / authentication?
 - Are there problems that persist?

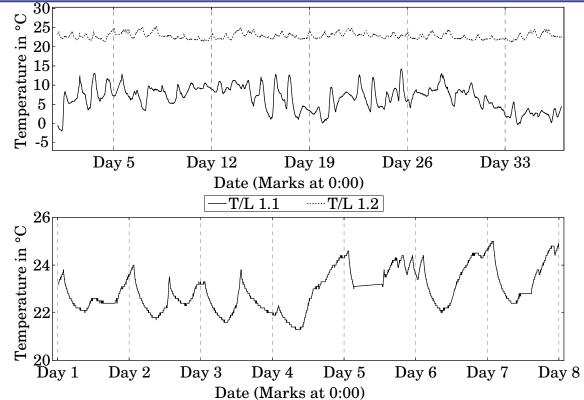
Our Experiment

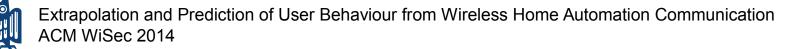
- 2 volunteers
- HomeMatic systems (default: no encryption, authentication only for door locks)
- Setup (placed inside the property)
 - Raspberry Pi
 - CC1101 USB Lite with culfw firmware
- 36 and 24 days of capturing data
- Analysis with custom software
 - 3 modules
 - Sniffer: Record data
 - Cleaner: Remove unnecessary data and organize the rest
 - Analyzer: Display data in human-readable form

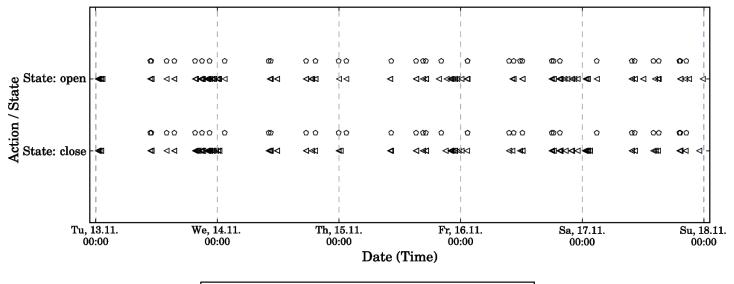


Our Experiment – Methods


- Identifying devices
 - Apply regular expressions to messages
 - Plausibility checks (e.g. temperature values)
- Recognizing patterns
 - Visualization of data
 - Directed graph of connected devices
 - 2D-graphs of statuses / commands over time
- Finding correlations
 - Sliding window (occurrences of message pairs)
- Identifying automation rules
 - Commands sent at approx. the same time (almost) every day


- Regular home installation
- 45,679 messages from 23 devices

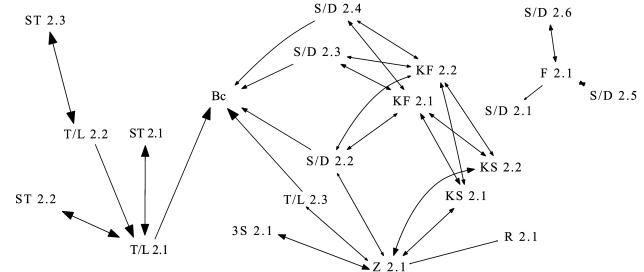

- Some devices are remote controlled
 - Clear user interaction \rightarrow presence / absence

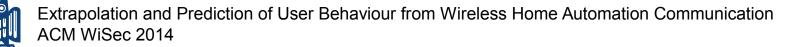

Candidate 1 – Temperature / Humidity Sensors

- One temperature/humidity sensor outside the house
- Another one in living room
 - Heating controlled manually
 - Seldomly ventilated for more than 10 minutes

Candidate 1 – Tri-State Sensors

3S 1.3 (Action / State) • 3S 1.6 (Action / State)


- Tri-state sensor on front door
 - Exact leaving / arrival times!
- Other results
 - Alarm function with bedroom lights
 - Automatic blind control with dawn / dusk times


Extrapolation and Prediction of User Behaviour from Wireless Home Automation Communication ACM WiSec 2014

Candidate 2

- 2 connected installations: Office and home
- 34,707 messages from 20 devices

- More devices are remote controlled or paired
 - Information about automation rules and user interaction
 - Remote control messages only in one location \rightarrow presence /absence
- Automatic heating control
 - Heating turned off at night and on weekends, on in the morning

Encryption

- We've seen how much information is leaked
- What about encryption?
- Headers not encrypted: Nodes might still be identified
 - Communication partners
 - Frequency of communication
 - Tri-state sensors and locks only report state changes
 - State can be inferred
- Headers encrypted:
 - Amount of communication indicates presence
 - Additional power consumption

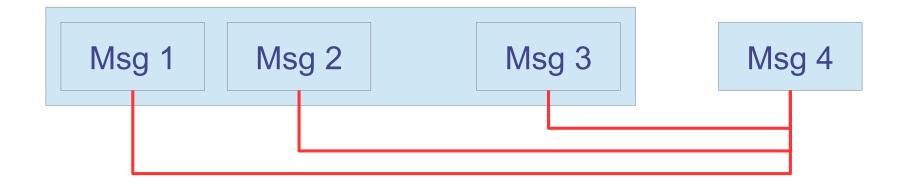
Summary / Outlook

- Current systems leak high amount of personal information
- Encryption is important
 - So is authentication thermostats can be controlled
 - But there is more to do
- Need to hide communication
 - Create dummy traffic
 - How to determine when to send dummy messages?
 - Be energy efficient!

Questions?

frederik.moellers@uni-saarland.de

Extrapolation and Prediction of User Behaviour from Wireless Home Automation Communication ACM WiSec 2014

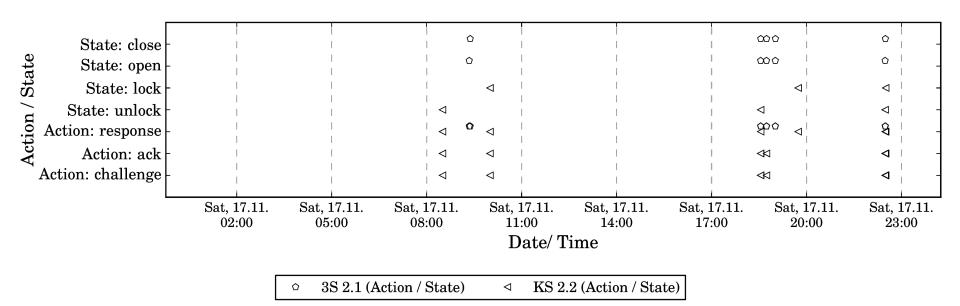

BidCos Protocol

- 868,3 MHz
- Layer 0&1: TI CC1100
- Layer 2: BidCos (no higher layers)

Length	Counter	Control	Туре	Sender	Receiver	Data
1	1	1	1	3	3	\$Length

Corellation Analysis – Sliding Window

- Configurable parameters:
 - Minimum frequency
 - Number of times a single message (4) occurs
 - Minimum support
 - Number of times a message (4) is preceded by its counterpart (1/2/3)
 - Window size



Identifying Automation Rules

- Steps
 - Collect messages with same content
 - Discard dates (keep times)
 - Sort by time in ascending order
 - Find large number of events at roughly the same time
- Configurable parameters
 - Minimum frequency
 - Number of times the message occurs
 - Maximum deviation from rule
 - Time a message timestamp can deviate from the rule's time
 - Maximum time difference between messages from same rule
 - Should be \leq max. deviation x 2

Candidate 2 – KeyMatic Door Locks

- KeyMatic door locks
 - Similar to a sensor on the door
 - Tells when door is locked/unlocked
 - Possible DoS targets

External Image Sources

- Slide 2
 - http://www.eq-3.de/produkt-detail-46/items/homematic-funk-fernbe dienung-8-tasten.html
 - http://www.ideal-sound.com/home-automation/
- Slide 3
 - http://www.reichelt.com/Programmer-Development-Tools/R ASPBERRY-PI-A/3//index.html?ACTION=3&GROUPID=5514&ARTI CLE=133473&SHOW=1&OFFSET=16&
 - http://comprise-direkt.de/cc1101-usb-lite-868mhz-cul-antenne.html

