
Faculty of Electrical Engineering, Computer Science and
Mathematics

Master’s Thesis

An Analysis of Traceability of
Electronic Identification Documents

Student: Frederik Möllers

Field of Study: Computer Science

Advisor: Jun.-Prof. Dr. Christoph Sorge

Second Advisor: Prof. Dr. rer. nat. Johannes Blömer

Abstract

While electronic identification documents featuring contactless interfaces be-
come more and more common, the concern about the security of these devices
grows proportionally. Identity theft, fake identities and traceability of people
are some of the dangers that come with the introduction of this new techno-
logy. While the parties involved in the development try to make the documents
as secure as possible, many people doubt that this will keep adversaries from
exploiting the devices for their own benefit.

This thesis provides an objective analysis of the susceptibility of electronic
identification documents to traceability attacks, using the new German Iden-
tification Card as an example. Its features to prevent tracking of individuals
are examined and tested to determine whether they comply to the high re-
quirements that are needed to keep their owners safe from malicious parties.
Existing software is used and extended during the work and later utilized to
uncover a weakness in the response behaviour of the RFID chip that is included
in these documents.

Using this information, attackers are able to recognize the card of a previously
observed victim within a set of several hundred similar cards. This poses a
great threat to the privacy of the users, as in a few years almost all German
citizens will carry such an electronic Identification Card.

iii

Acknowledgements

I would firstly like to thank Sebastian Seitz for his support, guidance and
helpful advice during my work.

Just as much would I like to thank Holger Funke of HJP Consulting for his
advice and support. Without the knowledge and material he provided I would
not have been able to finish this work in its extent within the five months.

Additional thanks go to the persons who lent me their Identification Cards for
testing purposes: Aaron Bamberg, Jens Bewermeier, Tim Hartung, Dr. Jan
Möllers, Jun.-Prof. Dr. Christoph Sorge as well as the students of the lectures
“Datenschutz” and “Grundlagen der Programmierung 1”.

Finally I would like to thank my family and friends for all their invaluable
support.

v

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Scope of Work . 1
1.3 Approach . 2

2 Terms, Definitions and Protocols 5
2.1 Terms and Definitions . 5

2.1.1 APDU . 5
2.1.2 CAN . 6
2.1.3 EAC . 6
2.1.4 MRZ . 7
2.1.5 PIN/PUK . 7
2.1.6 UID/PUPI . 8

2.2 Protocols . 9
2.2.1 ISO-14443 Card Select 9
2.2.2 PACE . 9
2.2.3 Terminal Authentication 11
2.2.4 Chip Authentication . 13

3 Theoretical Considerations 15
3.1 Use Cases . 15

3.1.1 General Procedure . 15
3.1.2 Governmental Versus Civilian Usage 16
3.1.3 Online Versus Offline Usage 16
3.1.4 Hidden Readers . 17

vii

3.2 Card Type Distinction . 18
3.2.1 ISO-14443 Type A/B . 18
3.2.2 Distinction via Protocol and Algorithm Support 19
3.2.3 Chip Authentication Public Key 19
3.2.4 Possible Attack Scenarios 20

3.3 Random Numbers . 20
3.3.1 Card Selection UID/PUPI 21
3.3.2 PACE Random Nonce 21
3.3.3 Terminal Authentication Challenge 22
3.3.4 Possible Attack Scenarios 22

3.4 Timings . 23
3.4.1 Possible Attack Scenarios 23

3.5 Conclusion of Considerations . 24

4 Implementation 27
4.1 Proxmark III Architecture . 27

4.1.1 Client Usage . 29
4.2 Limitations of the Implementation 31
4.3 General Modifications . 31
4.4 UID Collection . 32
4.5 PACE Nonce Collection . 32
4.6 T.A. Nonce Collection . 34
4.7 PACE Timings . 34

5 Analysis Methods 37
5.1 Random Number Analysis . 37

5.1.1 3-dimensional Attractors 38
5.1.2 Dieharder Random Number Test Suite 40

5.2 Timing Analysis . 44

6 Analysis Results 47
6.1 3-dimensional Attractors . 48

6.1.1 ISO 14443 UIDs . 48
6.1.2 PACE Nonces . 49

6.2 Dieharder Random Number Analysis 50
6.2.1 ISO 14443 UIDs . 50
6.2.2 PACE Nonces . 58

6.3 Timing Analysis . 59
6.3.1 Map Nonce APDU timings Per Card Pair 60

viii

6.3.2 Perform Key Agreement APDU Timings Per Card Pair . 61
6.3.3 Overall Response Times Per Target Card 62

7 Summary 67
7.1 Summary of Analysis Results 67
7.2 Future Work . 68

ix

List of Figures

2.1 APDU Structure . 6
2.2 CAN on the German Identification Card 7
2.3 MRZ on the German Identification Card 8
2.4 ISO-14443 Card Select procedure 10
2.5 PACE procedure . 11
2.6 Terminal Authentication Procedure 12
2.7 Chip Authentication protocol procedure 13

4.1 Proxmark III Data Flow . 28
4.2 Proxmark III Software Architecture 30
4.3 UID Collection Using the Proxmark III 32
4.4 PACE Nonce Collection Using the Proxmark III 33
4.5 PACE Replay Using the Proxmark III 35

5.1 Strong attractor behaviour in a random number generator . . . 39

6.1 Attractor behaviour of the ISO 14443 UID generator 48
6.2 Attractor behaviour of the PACE nonce generator 49
6.3 Timings of replayed Map Nonce APDUs per target-source card

pair . 61
6.4 Timings of replayed Perform Key Agreement APDUs per card

pair . 62
6.5 Timing characteristics of different Identification Cards 64

xi

Chapter 1
Introduction

1.1 Problem Statement

In November 2010, the German Ministry of the Interior introduced the new
electronic identification card [14]. Several new security features were added
[4, 19] to improve those already present in the electronic passport. The purpose
of these new features was to increase the level of security and to mitigate
possible attacks like those mounted on the passport [9, 28, 11].

While the protocols and standards used by the electronic identification card
are considered to provide adequate security against compromisation of personal
data, there has yet been little to no research on tracking and recognition of
previously “seen” cards. Previous research has focused on different RFID
devices, analyzing aspects like electrical [12] and timing properties [33].

1.2 Scope of Work

This thesis addresses the problem of traceability for electronic travel documents
such as the new electronic identification card by using side-channel informa-
tion. In the scope of this work, parts of the system such as random number
generators, protocol implementations, timings and other characteristics of the

1

Chapter 1. Introduction 1.3. Approach

employed RFID chips are analyzed for weaknesses that could be exploited.

For example, predictability of random numbers used in the communication
protocols would allow an adversary to determine wether or not he has seen
a certain device before. Distinct behavior of chips produced by a certain
manufacturer (e.g. differences in timing or different reactions to invalid input)
would open the possibility to distinguish between classes of devices and might
ultimately lead to the ability of matching device characteristics to persons.

For all scenarios, it is assumed that the attacker does not have physical access
to the card by visual or mechanical means. This would already allow him to
distinguish between cards using the data printed on them. The only feature
assumed to be consistently available is the opportunity to initiate a wireless
communication. In addition to this, the adversary might be able to acquire
prior knowledge about the card owner, such as the name, birthdate, card issue
date or similar data. Wether or not this prior knowledge is needed in a certain
case will be determined and the preliminary conditions for each attack vector
will be collected.

The work on this topic will be done using real hardware to make the scenario
as realistic as possible and to ensure that no properties of a physical environ-
ment (as opposed to a virtual one) are missed during the analysis. This also
introduces the risk of measurement errors and deficiencies of the employed
hardware. Due to the examination being focused on the practicability of at-
tacks in the real world though, the benefits outweigh the risks.

1.3 Approach

The work can be divided into three parts. The first part will be to determine
which characteristics of the examined travel documents should be collected
for analysis and how the collection as well as the analysis can be done. The
random numbers used by the card during identification and for the setup of an
encrypted connection provide a reasonable starting point. Their entropy can
be calculated using different existing methods. Timing information is a second
candidate. It is possible to measure wether different devices show distinct
behavior in terms of calculation periods and response times.

2

1.3. Approach Chapter 1. Introduction

The second part will consist of the implementation of a system to gather
the data specified in the first part. This implementation will be based on the
Proxmark III RFID Tool [34]. An open-source firmware for the device is readily
available and can be customized to accomodate the needed functionality.

Once enough data has been gathered, it will be analyzed by different means
as the third part of the work. The goal of this part is to find out wether
there are characteristics in the devices that enable an adversary to track a
single document over longer periods of time. The dieharder test suite [7], for
example, can be used to examine aforementioned random numbers.

3

Chapter 2
Terms, Definitions and Protocols

This chapter covers the basic terms, definitions and protocols which are used
and referenced throughout the entire thesis. At first, technical terms are ex-
plained or defined and after that the operations of protocols are given.

2.1 Terms and Definitions

In the following paragraphs terms that are used throughout the thesis and
especially in the protocol descriptions in chapter 2.2 are explained and defined.

2.1.1 APDU

An APDU (ApplicationProtocolDataUnit) as defined in the ISO-7816 stand-
ard [27] is a packet used in the communication between smartcards like the
new German Identification Card and a reader device. There are two classes of
APDUs: Command APDUs and Response APDUs.

• Command APDUs are sent by the reader and consist of a 4-byte header,
an optional data body preceded by a byte indicating the length and an
optional byte telling the expected length of the Response APDU. The

5

Chapter 2. Terms, Definitions and Protocols 2.1. Terms and Definitions

unit for the length specifications is bytes.

• Response APDUs are sent by the card as answers to Command APDUs
and consist of an optional data part followed by a 4-byte status word.
Response APDUs do not include a header.

Figure 2.1 shows the structure of Command and Response APDUs.

...CLA INS P1 P2

Header

Lc D1

Data Body
Optional

D3D2 Le

Optional

...D1 D3D2 SW1 SW2

Data Body
Optional

Status
Word

Command APDU Response APDU

Figure 2.1: The structure of APDUs.
Abbreviations: CLA — Class; INS — Instruction; P1 — Parameter 1; P2 — Parameter 2;
Lc — Command Length; D1, D2, D3, ... — Data Byte 1, 2, 3, ...; Le — Expected Response
Length; SW1, SW2 — Status Word Byte 1, 2

2.1.2 CAN

The CAN (Card Access Number) is a document-specific password printed
on the new German Identification Card. It can be used as a password for
the PACE protocol (see section 2.2.2), a password-based key exchange for
encrypted communication. Only governmental authorities like customs and
police have the possibility to read the content of cards using the CAN as a
password for PACE. Figure 2.2 shows the location of the CAN on the card.

2.1.3 EAC

The term EAC (Extended Access Control) is used to group a set of protocols
and security measures that protect electronic identification documents from
unauthorized access. For the German electronic Identification Card these are
Chip Authentication (see section 2.2.4) and Terminal Authentication (see sec-
tion 2.2.3).

6

2.1. Terms and Definitions Chapter 2. Terms, Definitions and Protocols

Figure 2.2: The CAN (marked in red) on the new German Identification Card.

In the case of the German electronic Identification card, a list of the supported
protocols and their versions can be read from the chip by any capable device
without authorization.

2.1.4 MRZ

The MRZ (Machine Readable Zone) is a section on the identification docu-
ment which includes distinctive information in a format that is easily readable
by a machine using OCR software. It usually includes the name of the owner,
the document number and other information depending on the type of doc-
ument. Figure 2.3 shows the location of the MRZ on the back of the new
German Identification Card.

For the PACE protocol (see section 2.2.2), a password can be computed by
applying a Key Derivation Function [19] to specific parts of the MRZ. Similarly
to the CAN, only governmental authorities can read data from the card after
executing PACE with the derived password.

2.1.5 PIN/PUK

The PIN (Personal IdentificationNumber) is a 6-digit code given to the owner
of an identification card. It is used—similarly to the CAN—as a password for

7

Chapter 2. Terms, Definitions and Protocols 2.1. Terms and Definitions

Figure 2.3: The MRZ (marked in red) on the back of the new German Identification Card.

the PACE key exchange (see section 2.2.2). In contrast to the MRZ and
the CAN, the execution of PACE with the PIN serves as an initialization for
private use, such as authorization in online shops. The number is not printed
anywhere on the card to make sure that a stolen or lost card cannot be abused.

If the user enters the wrong PIN during the authentication procedure 3 times
in a row, the card will lock up and prevent any further tries unless it is unlocked
with the PUK (PersonalUnblockingKey). The PUK is a 10-digit code similar
to the PIN, but the increased length increases its strength against a brute force
cracking attempt.

2.1.6 UID/PUPI

In the context of the ISO-14443 communication protocols [23, 24, 25, 26], a
UID (Unique Identifier) or PUPI (Pseudo-Unique Proximity Card Identi-
fier) is a (pseudo-) unique device identifier which distinguishes one RFID card
from others in a set. It is used to address a single card among several others in
the vicinity of a single reader. In the case of the German Identification Card,
this identifier is to be generated randomly every time the card enters the field
of a reader.

8

2.2. Protocols Chapter 2. Terms, Definitions and Protocols

2.2 Protocols

This section describes the protocols that are supported by the German Iden-
tification Card. They are ordered by the sequence in which they are executed
during a typical use case scenario. These use cases are detailed in chapter 3.1.

2.2.1 ISO-14443 Card Select

Before high-level protocols between an RFID reader and a card can be set up,
the two devices have to establish a communication link between each other.
This makes sure the reader can distinguish between multiple different cards
in its vicinity and a card only responds to commands which are meant for it
specifically [25]. For this scenario the ISO standard assumes that only one
RFID reader is communicating with a set of cards in its vicinity.

In an anticollision sequence [25], the reader probes the UIDs or PUPIs of
each card in its vicinity (the exact process is described in the standard, but
is unimportant for this thesis). After that, it assigns a Card Identifier (CID)
to each card it will communicate with by issuing a special selection command
which includes the UID/PUPI of that card together with the CID. Higher-level
protocols always include the CID in packets, so that a card can determine
wether it should react to a packet or not. Figure 2.4 shows the procedure of
establishing a link between the reader R and a card B.

2.2.2 PACE

PACE (Password Authenticated Connection Establishment [19] is a protocol
for the establishment of a secure messaging channel between an RFID reader
and the RFID chip of an electronic identification document. Its purpose is to
make sure that only persons with visual access to the card or knowledge of the
PIN can initiate a communication with it and to make eavesdropping on the
data transfer infeasible.

The protocol serves as an improved alternative to the relatively weak [28] BAC
(Basic Access Control) [22]. In advantage to BAC, PACE uses ephemeral ses-

9

Chapter 2. Terms, Definitions and Protocols 2.2. Protocols

Card A Reader R Card B

1. Query UIDs (Broadcast)

2. UID 1 2. UID 2

3. CID 1

Figure 2.4: A simplified illustration of the ISO-14443 Card Select procedure. Step 2 actually
consists of multiple sub-steps to avoid collisions between simultaneously transmitted UIDs of
different cards.

sion keys that are sufficiently strong although the complexity of the password
might be as low as a 6-digit code. This makes an offline brute force attack
against the password impossible without cracking the much more complex ses-
sion keys first.

The PACE protocol is based on the Diffie–Hellman key exchange [19, 16] and
figure 2.5 shows a simplified illustration of an execution of PACE. Since the
key exchange alone is susceptible to a man-in-the-middle attack, the PACE
protocol incorporates a modification in the initial step. The card generates a
random number which is used by both the card as well as the terminal to derive
the ephemeral keys from which later the shared secret (the symmetric key) is
computed. This random number is encrypted with a password before being
passed to the reader. The password can be either derived from the MRZ (see
section 2.1.4), it can be the CAN (see section 2.1.2) or the PIN (see section
2.1.5. Thus, an adversary would have to know this password to be able to
mount a man-in-the-middle attack, as it would have to use the same seed as
the card for the key generation.

This modification also lowers the risk of a password cracking attack, because an
adversary has no means to decide wether a password used for the decryption of
the initially generated random number is correct unless he uses it to execute
the protocol and either fails or succeeds. Hence, he would theoretically on
average have to make Number of possible passwords

2 attack attemps before finding
the correct password. Counting only the card’s response times of an attempt

10

2.2. Protocols Chapter 2. Terms, Definitions and Protocols

Reader R Card A

2. Generate random
 number n

3. n encrypted with CAN/MRZ
 + static parameters

1. Initiate PACE

4. Generate DH-keypair
 (PKA, SKA) using n and
 static parameters

4. Generate DH-keypair
 (PKR, SKR) using n and
 static parameters

5. PKA, PKR

4. Derive shared secret
 K from SKA and PKR

6. Derive shared secret
 K from SKR and PKA

Figure 2.5: A simplified illustration of the PACE procedure.

using existing software [20], one try takes at least 1.2 seconds (not counting
the computational effort), so a lower bound for cracking the password is thus
approximately 7 days. If the PIN is used, the card will also lock up after 3
failed tries, preventing any further authentication attemps unless it is unlocked
with the PUK (see section 2.1.5).

PACE alone however does not provide protection against an attacker who has
knowledge of the password, e.g. by managing to get a look at the document
itself.

2.2.3 Terminal Authentication

In order to guarantee that a Identification Card reader is entitled to access
certain information stored on the card, it has to authenticate itself. There are
two versions of a protocol for Terminal Authentication [19]. The common pro-
cedure in both versions is that the reader sends a certificate chain to the card
which the card verifies using the saved public key of the topmost certification
authority. The card then sends a random number n to the reader. On the
reader, the number is concatenated with additional data and signed with the

11

Chapter 2. Terms, Definitions and Protocols 2.2. Protocols

reader’s private key SKR. The signature is sent back to the card and is checked
using the reader’s public key PKR extracted from the certificate chain.

The two protocol versions differ in the additional data which is also signed by
the reader. Version 2 was designed in a way that ties it to PACE and Chip
Authentication so that the three protocols build on each other. Figure 2.6
shows the general procedure of this version which is implemented on the new
German Identification Card.

Reader R Card A

2. Verify certificates with
 stored public key and
 extract reader's public
 key PKR

1. Certificate Chain

3. Generate ephemeral
 DH-keypair (PK'R, SK'R)

4. PK'R

5. Choose random
 number n

7. Sign n, PK'R, IDA

 with SKR

6. n

8. Signature generated in 7.

9. Verify signature
 using PKR

Figure 2.6: A simplified illustration of the Terminal Authentication version 2 procedure.

12

2.2. Protocols Chapter 2. Terms, Definitions and Protocols

Reader R Card A

2. Static DH public key PKA

 + static parameters

1. Initiate Chip Authentication

3. Generate DH-keypair
 (PKR, SKR) using
 static parameters

4. PKR

5. Derive shared secret
 K from static DH secret
 key SKA and PKR

5. Derive shared secret
 K from SKR and PKA

Figure 2.7: A simplified illustration of the Chip Authentication procedure. In version 2 of
the protocol, the ephemeral keys of the reader are not generated in step 3. Instead, the keys
generated during Terminal Authentication are used. After this key exchange, the terminal
can read the card key’s signature and verify that the document is authentic.

2.2.4 Chip Authentication

Chip Authentication as defined in the technical guideline TR-03110 [19] pro-
vided by the BSI is little more than a Diffie–Hellman key exchange [16]. The
card uses a static key pair and the reader uses an ephemeral key pair either
generated on the fly or taken from Terminal Authentication (see section 2.2.3),
depending on the protocol version. The public key of the card is signed by a
federal authority and this signature is saved on the chip, thus the reader can
verify that the card is a valid, authentic document by reading and verifying said
signature afterwards. The protocol’s purpose is to make it virtually impossible
to fake identification documents. Figure 2.7 shows the general procedure of
Chip Authentication.

13

Chapter 3
Theoretical Considerations

This chapter focuses on the question as to which data regarding the considered
identification documents is available and should be collected for an in-depth
analysis as well as the possible attacks that can be carried out if this analysis
reveals a weakness.

3.1 Use Cases

Within the following paragraphs, the use cases of the German Identification
Card are described.

3.1.1 General Procedure

Independent of the concrete case, the general procedure of a data exchange
with the Identification Card is the same. At first, the reader device performs
the Card Select Procedure to set up a communication channel. Then, PACE
is executed to provide encryption for the channel. The protocol takes place
only between the reader device and the card. As a last preparative measure,
Terminal and Chip Authentication are performed between the card and the
device that actually tries to access the data. This is not necessarily the reader

15

Chapter 3. Theoretical Considerations 3.1. Use Cases

itself, but often a computer connected to the reader or a server on the internet.

3.1.2 Governmental Versus Civilian Usage

If the card is to be accessed by governmental authorities, the MRZ or the CAN
are used as passwords for the PACE protocol. This enables the accessing party
to read data from the chip without the cooperation of the owner and without
the need for the PIN which can be forgotten. Governmental authorities have
certificates for the Terminal Authentication protocol that allow them to access
all data on the chip, such as the biometric image, fingerprints (if they are
stored) and the address of the owner.

On the contrary, when a civilian party wants to query data from the Identi-
fication Card, the password for the PACE protocol is the PIN. This prevents
misuse as the cooperation of the owner is required for every interaction. The
certificates for Terminal Authentication usually allow only certain information
to be read, such as the name and address for online shops. There is support for
an age verification on the chips, that allow the service provider to verify that
the owner is above a certain age without giving him access to the date of birth
itself. A similar verification is available for the city of birth. Furthermore, the
provider can perform a Restricted Identification to recognize returning cus-
tomers. The protocol offers an identifier that is constant for a single card, but
is different from one service provider to another, to prevent the creation of
behaviour profiles by cooperation.

3.1.3 Online Versus Offline Usage

The most simple use case is that the card is placed on a reader that either
processes the data itself or is directly connected to a computer which handles
the processing. This, for example, is the case at border controls.

There are two possible attack scenarios for offline usage. On the one hand,
the attacker can place a sniffer near the reader and intercept all communica-
tion conducted with the card. Of course, the channel is encrypted after the
execution of PACE, but the attacker can still log raw packets and measure
timings for later use. On the other hand, the accessing party itself can be

16

3.1. Use Cases Chapter 3. Theoretical Considerations

the attacker. For governmental authorities this is rather unrealistic, as they
already have access to all data. For civilian service providers however it can be
interesting to try and access data that they are actually not allowed to. Since
they already provide the reader and the processing device (which might be the
reader itself), they have access to all data that is sent by the RFID chip on
the card as well as the timing information if they measure it.

The protocols of the Identification Card were designed to make an online usage
possible as well. The reader is supplied by the card owner and is connected to
a computer. The Card Select as well as PACE are executed between card and
reader only. Terminal Authentication, Chip Authentication and all following
communication takes place between the card and a server which is supplied by
the service provider.

Similar attack scenarios as for the offline usage are possible online, although
the risk of an attacker placing a sniffer next to the owner’s card reader is
significantly smaller. If the attacker is the service provider himself, he can
however not access the same amount of information as in the offline scenario.
Since no information reaches the server until after the execution of PACE, he
can thus only log the traffic of Terminal Authentication, Chip Authentication
and the data exchanged thereafter. Timing information is available, but most
likely not of much use, as the internet introduces a high fluctuation of latency.

In addition to this, an attacker can try to mount a man-in-the-middle attack
on the connection to the server. The data stream is still encrypted by Terminal
and Chip Authentication (and possibly an encrypted connection between the
owner’s computer and the server, such as SSL). If he is unable to crack this
encryption (which is very likely due to the protocols in use), he can only log
ecrypted data. The timings he can gather are also subject to the internet’s
fluctuation and are thus most likely of little use.

3.1.4 Hidden Readers

While it is not a use case per se, an attacker can place a hidden reader at
arbitrary locations to gather information from Identification Cards that pass
its vicinity. Due to the fact that the reader is not supplied by the card owner
and that the communication does not go beyond the reader, this case will be
grouped with the offline scenarios.

17

Chapter 3. Theoretical Considerations 3.2. Card Type Distinction

Unless the adversary is an institution entitled to access data on the cards for
a legitimate use, for example a shop owner, he will not have a certificate for
Terminal Authentication. It is also very unlikely that he has knowledge of any
MRZs, CANs or PINs of the cards that pass the reader’s field. Thus, he can
merely read basic data such as the ISO 14443 UID or information about the
supported encryption algorithms and gather the timings during this procedure.

3.2 Card Type Distinction

The protocols and standards related to the German Identification Card often
do not dictate certain behaviour for implementations but rather give recom-
mendations and choices for the actual manufacturers to decide during imple-
mentation of the card. Since there are two different companies manufacturing
the chips for the Identification Cards [37, 17] and the companies might change
their implementations from time to time while still conforming to the stand-
ards, there might be characteristics that allow an adversary to distinguish
between a limited number of different cards.

3.2.1 ISO-14443 Type A/B

The ISO-14443 standard [24, 25, 26] allows two different kinds of RFID cards
that use different modulation schemes in the physical communication layer as
well as a different command set in the card selection protocol. These are called
type A and type B cards. A reader that is to be certified as being ISO-14443
compatible must be able to communicate with both types of cards. The new
German Identification Card is not bound to one type, so it might accomodate
a chip that supports either of the two types or (possibly, but unlikely due to
increased manufacturing costs) both.

Since the reader device has to use different commands for the communication
with type A and type B cards, it can easily detect the type of a specific card.
This information allows an adversary to divide all recognized cards into two
sets, offering 1 bit of entropy.

18

3.2. Card Type Distinction Chapter 3. Theoretical Considerations

3.2.2 Distinction via Protocol and Algorithm Support

For the implementation of the PACE protocol according to its definition [19],
a number of parameters has to be set. These parameters include the protocol
version, whether to use elliptic curve cryptography, encryption algorithms or
the key length. A lower bound for the number of theoretically possible distinct
parameter sets is 32, but this number is much higher in reality as there is no
fixed number of available domain parameters that are used during the key
generation. Together with all other parameters that have to be specified on
the German Identification Card (e.g. for Terminal and Chip Authentication),
this results in a lower bound of 394240 distinct sets. The composition of all
this information could make up a “fingerprint” of a certain card and allow a
recognition in a larger set of similar cards.

However, the values for most parameters have been fixed by the BSI [8], so it is
not possible to distinguish cards based on such a fingerprint. The reason why
the choice of parameter values has been left open in the first place is to give
other institutions who want to include the same protocols in their products
the chance to adapt the parameters to their needs.

Instead, it is possible to read the list of supported algorithms and parameters
from the card and check the ordering of this list. There is no regulation
regarding the ordering, so it might provide a degree of entropy that can be
combined with other features to allow the identification of a card among a set.
6 parameter entries have to be included on every chip, so the lower bound for
the number of possible orderings is 720. It is possible that this is higher in
practice, because the choice whether to include other parameter values in the
list is left to the manufacturers.

3.2.3 Chip Authentication Public Key

In the Chip Authentication protocol (see section 2.2.4), the Identification Card
uses a static Diffie–Hellman key to set up a secure communication channel
between itself and the reader. The guidelines for the new German Identification
Card [8] state that every card within one generation should have the same static
key. In practice, the time interval of one generation is 3 months.

19

Chapter 3. Theoretical Considerations 3.3. Random Numbers

The standard requires readers to go through the Terminal Authentication pro-
cedure (see section 2.2.3) before initiating Chip Authentication. If an attacker
manages to gain access to the public key without using Terminal Authentic-
ation, he could use this property to further divide cards up into smaller sets,
possibly enabling him to recognize a previously seen card among a set of others.

3.2.4 Possible Attack Scenarios

Since Identification Cards are produced in large numbers by only two manufac-
turers, it is near impossible that one card can be distinguished from all other
cards currently in use by examining the aforementioned properties. However,
it is entirely possible that the combination of properties permits a distinction
from a large set of other cards. The average size of such a set where each card
shows distinctive properties depends on the entropy of these properties which
can be approximated by sampling data from a large number of Identification
Cards.

The data can—with the exception of the ISO 14443 card type, which is only
available to the card reader or a sniffer—be accessed in both online and offline
scenarios. All information passes the reader, goes on to the processing device
and is unencrypted unless it is sent over a secure connection set up for this.

A scenario where this information could be used by an adversary to track
individuals is for example a shop with a customer base that is fixed to a certain
degree and very small, like an expensive fashion label. Even though the owner
of the retail chain may not be authorized to read the Identification Cards of his
customers, the installation of devices that secretly gather information could
enable him to build movement profiles of the people coming to the shops by
tracking digital fingerprints established from the data mentioned above.

3.3 Random Numbers

The protocols implemented on the new German Identification cards employ
random numbers at various points. If the random number generator(s) used
by the cards have flaws, the generated numbers might be predictable, allowing

20

3.3. Random Numbers Chapter 3. Theoretical Considerations

an attacker to recognize a chip he has seen before by analyzing the random
numbers of followup communication.

The BSI has specified requirements regarding the random number generators to
be used on the Identification Cards [8], but these requirements do not apply for
the ISO 14443 UIDs. Also, related analysis of random numbers in cryptography
[5] has shown that in practice weak implementations can be found in places
where they form an essential part of security measures.

3.3.1 Card Selection UID/PUPI

In the ISO-14443 Card Select protocol [25] (see section 2.2.1), the Identification
Card generates a new UID/PUPI every time it enters the field of a reader. By
cycling the field and probing the card multiple times in a row, the generated
UIDs/PUPIs can be collected and analyzed for weaknesses in the employed
random number generator.

3.3.2 PACE Random Nonce

In the initial step of the PACE protocol (see section 2.2.2), the chip generates
a random number, encrypts it with a password (either the CAN or a key
derived from the MRZ) and sends it to the reader. This number is called a
nonce (number used once). Since the encryption key is static, a weak random
number generator could allow an attacker to predict the packet sent by the
chip even if he has no knowledge of the used password.

The PACE protocol can be initiated immediately after the ISO-14443 Card
Select protocol without having to authenticate the reader to the card [19],
because after its execution no data is made available that is not already visible
on the Identification Card itself. When the packet has been received, the field
powering the chip can be cut and the procedure can be repeated an arbitrary
number of times until sufficiently many numbers have been collected.

21

Chapter 3. Theoretical Considerations 3.3. Random Numbers

3.3.3 Terminal Authentication Challenge

During Terminal Authentication, the card sends random data to the reader
which is to be signed by the latter. The standard requires the PACE protocol
to be executed before starting Terminal Authentication, but an implementation
of PACE would be beyond the scope of this work. If the random data used
during Terminal Authentication can be requested without a prior invocation
of PACE, it would provide an additional source of random numbers that can
be analyzed.

3.3.4 Possible Attack Scenarios

While the UID and the PACE nonce are only available at the reader (and can
be captured by a sniffer), the Terminal Authentication Challenge is sent to
the processing device, whether this is a server on the internet or the reader
itself. The challenge is however encrypted using an ephemeral PACE key, so
unless the attacker is able to crack PACE, it can only be read (and possibly
exploited) by the service provider.

The predictablity of random numbers can lead to a very high amount of en-
tropy available for recognizing previously seen cards. If, for example, the 24
supposedly random bits of the UID and 16 bytes of the PACE nonce could be
predicted with certainty, one could recognize a previously seen card among a
set of 1 million with a confidence of almost 100%. This is given by a general-
ization of the birthday problem [13].

An attacker could, for example, stand near his victim and retrieve numbers
from the victim’s Identification Card by using a hidden reader. Once enough
numbers have been gathered, the next number could be computed and a large
network of hidden readers that are positioned e.g. in shopping centers or
pedestrian precincts could search for a card that generates this number when
queried. If such a card is found, it can be assumed with high confidence that
this card belongs to the victim.

A problem with this attack might arise if the number can only be predicted
approximately and the victim uses his card at a different reader device in the
meantime, as this would lead to the predicted number being “consumed” in the

22

3.4. Timings Chapter 3. Theoretical Considerations

process. The next numbers could not be predicted reliably and a new number
of samples would have to be collected from this victim.

3.4 Timings

Chotia and Smirnov [11] successfully traced electronic passports by replaying
BAC protocol [21] packets and measuring the times between the sending of the
packet and the reception of an answer. It was discovered that packets captured
from a previous communication with the same passport showed different timing
characteristics than packets from another one.

The reason behind this weakness was that packets captured from a transmis-
sion by the same passport have a correct checksum, but an incorrect content.
Messages from a different passport have an incorrect checksum as well as an
incorrect content. The chip on the passport verifies the checksum first and
if this fails, immediately returns an error message to the reader instead of
decrypting the message and verifying the content. This difference could be
measured and the passport could be identified with almost no doubt.

The BAC protocol is not implemented on the new German Identification Card
[8], but weaknesses that allow for a similar exploitation might appear in the
replacement PACE (see section 2.2.2). In particular, data concerning the do-
main parameters called “Mapping Data” in the standard [19] is exchanged
after the encrypted nonce and before the public keys (between steps 3 and 4
in figure 2.5). Processing this data might lead to errors on the RFID chip at
different points in time, depending on whether the replayed data was captured
from a communication with the same or a different card.

3.4.1 Possible Attack Scenarios

As already mentioned in the first part of this chapter, timings are most likely
useful only in offline scenarios or when the attacker is able to place a sniffer
near the reader.

The PACE protocol can be executed by using one of 3 possible passwords:
The MRZ, the CAN and the owner’s PIN (the MRZ and the CAN are only

23

Chapter 3. Theoretical Considerations 3.5. Conclusion of Considerations

used by governmental authorities). If the timings observed when replaying
messages allowed for a recognition of a previously seen card, an adversary
could eavesdrop on a communcation with a legitimate reader device—e.g. by
standing next to the victim at a border control or in a shop. Once he had a
set of messages, he could recognize the victim’s Identification Card within a
large set of others.

If the intercepted PACE execution used the PIN or CAN, he would be able
to identify cards that had the same PIN or CAN. He could not be absolutely
certain, though, that the recognized card was a different one that only had
the same password by chance. If, however, a handshake using the MRZ as a
password could be observed, this would allow the attacker to precisely identify
the same card among an arbitrarily large set of numbers, because the MRZ
(i.e. the card’s serial number which is part of the MRZ and used to derive the
password) is unique on each card.

3.5 Conclusion of Considerations

The classification of cards based on distinctive properties (as explained in
chapter 3.2) appears to be little promising for the purpose of tracking cards.
Only a small number of properties allow for a division of cards into subsets and
these properties provide little entropy, e.g. 1 bit in the case of the ISO 14443
card type distinction. The ordering of algorithm and version identifiers on the
cards seems to be the property which potentially carries the most entropy, but
a short test with four different, randomly chosen Identification Cards indicated
that the ordering is either fixed or there are only very few different orderings
being used in practice—all four cards showed the same sequence.

While the protocol versions are fixed, some parameters can still be varied by
manufacturers and issuers, so there is some deviation between cards. Reading
the parameters of the four different cards showed that two at a time were using
exactly the same parameters for all algorithms. It can thus be assumed that
there is some, but not much entropy in this information—probably in the order
of 1–6 bits. Due to this small distinctness of cards, the classification will not
be further pursued in this thesis.

The three sources of random numbers mentioned above will be used to gather

24

3.5. Conclusion of Considerations Chapter 3. Theoretical Considerations

sample data if possible. If the Terminal Authentication Challenge can not be
requested without a proper execution of PACE, it will be left out. The gathered
random numbers will be analyzed by a series of tests that have proved to be
sufficiently exhaustive, e.g. the Die Harder test suite [7] or the method used
by Zalewski [38]. It will be checked if the random number generators show
weaknesses in the form of predictability which allows tracking of cards.

For the PACE protocol, timings will be measured and analyzed for anomalies
that might allow recognition of a card. The protocol implementation will
be analyzed to find out wether a similar flaw like the one discovered in the
electronic passports [11] exists.

25

Chapter 4
Implementation

This chapter covers the details of the implementation used to obtain data
for analysis. At first, the design of the Proxmark III toolkit used here is
explained and the information flow within the toolkit is detailed. Thereafter
the modifications, improvements and additions which were done to the existing
Proxmark III software are listed together with the design ideas behind them.
In addition to this, the method used to collect data for the in-depth analysis
in the following chapters is specified.

4.1 Proxmark III Architecture

As outlined, the implementation took place on the Proxmark III RFID toolkit.

The Proxmark III toolkit consists of the client application running on a PC
and 2 programmable hardware components—a Xilinx Spartan-II FPGA and
an ARM7 microprocessor.

The client application is a command line utility written in C which enables the
user to pick from the available abstract tasks such as ISO 14443 Card Selection
or the interception of a communication between other devices. Commands are
sent to the microprocessor via USB.

27

Chapter 4. Implementation 4.1. Proxmark III Architecture

The microprocessor breaks down the task into its individual steps such as
querying RFID cards for their UIDs or sending an APDU to one of them. It
composes the packets and encodes them up to the link layer. They are then
passed to the FPGA as a sequence of bits.

The FPGA is used as a signal processor to modulate the data which is to be
sent and to demodulate the received signal.

Received data is passed to the microprocessor which acts accordingly. Once it
has finished the requested task, the collected information is transferred to the
client application which can then display it to the user.

Figure 4.1 shows the data flow between the components.

Client (PC) ARM
FPGA

+Antenna RFID Chip

Collect UID

→10110010...

→11011010...

10101100...

01010110...

UID: 081337FF

ISO 14443-3 WUPA

ISO 14443-3 SELECT

→ISO 14443-3 ATQA

→ISO 14443-3 SAK

Figure 4.1: The abstraction layers and the data flow of the Proxmark III toolkit. The
encoding and decoding of ISO 14443 commands to and from bit sequences takes place on the
ARM microprocessor.

Before this thesis’ source code was included, the software had offered basic ISO
14443 link layer functionality—Card Selection as well as APDU transmission
and reception. Higher level protocols such as those required for the German
Identification Card had not yet been implemented and the APDU functionality
had been incomplete.

28

4.1. Proxmark III Architecture Chapter 4. Implementation

4.1.1 Client Usage

The Proxmark III command line client proxmark3 is composed of command
subtrees. Commands of similar nature are grouped under tree nodes that
distinguish them from different commands, i.e. the top level nodes in the tree
are used to distinguish between commands related to low-frequency RFID tags
(lf), high-frequency RFID tags (hf) and others. By concatenating the tree
nodes, the user specifies the context of the command to be executed. The
command hf 14a cuids for example works with high-frequency (hf) RFID
tags that are ISO-14443 conformant (14a) and collects UIDs (cuids).

If there is additional input separated from the command by a space, this is
taken as a parameter to the command.

The commands related to this thesis are found under the hf 14a and hf epa
subtrees. Figure 4.2 shows the relevant parts of the user interface. It also
illustrates which functionality is included in which source code files for both
the user interface and the microcontroller firmware. In the microcontroller
code, the functions for the handling of the German Identification Card (in
epa.c) make use of generic ISO 14443 functionality which is located in the file
iso14443a.c.

29

C
hapter

4.
Im

plem
entation

4.1.
Proxm

ark
III

Architecture

help list reader cuids snoop

14a

help cnonces preplay

epa

hf ...

...

... ...

proxmark3

Display
help

Show
traffic
log

Perform
Card
Select

Collect
UIDs

Act
as
sniffer

Display
help

Collect
PACE
nonces

Replay
PACE
APDUs

Generic
ISO 14443
type A
chips

High
frequency
chips

New German
Identification
Card

Client
text interface

iso14443a.c epa.c
Microcontroller
firmware
source code files

cmdhf14a.c cmdhfepa.c Client software
source code files

Figure 4.2: The software architecture and user interface layout of the Proxmark III software. Parts marked in yellow have been
updated to fix bugs or remove limitations. Parts marked in green have been added newly.

30

4.2. Limitations of the Implementation Chapter 4. Implementation

4.2 Limitations of the Implementation

Before the implementation of the functions used in this thesis was complete,
the Proxmark III software had only been capable of communicating with ISO
14443 Type A RFID chips (see section 3.2.1). There are no regulations for
the German Identification Card as to whether it has to support the ISO 14443
Type A or Type B standard, so cards conforming to either of the two are
existing and being used. However, the higher level protocols are not affected
by this and there is little reason to assume that differences in the link layer
implementation affect the distribution of random numbers from the generator.
Thus, the software written to collect the data for this thesis supports cards of
ISO 14443 Type A only at the time of writing.

4.3 General Modifications to the Proxmark III
Software

As mentioned above, the functionality of sending and receiving APDUs had
been incomplete in the original Proxmark III software. The ISO-14443 stand-
ard [26] states that the reader has to keep track of a bit which is included
in every command and every response. Each time a response is received and
the bit in the packet’s frame matches the tracked bit, it has to be flipped to
indicate that the next data transmitted to the card actually is a new packet.

Within the scope of this thesis the missing functionality has been implemented
so that the APDU communication works reliably and is conformant to the
standard.

According to ISO 14443-3 [25], each byte in the data stream which is trans-
mitted from the reader to the card is to be followed by a parity bit. The
original implementation managed the computation and inclusion of this bit,
however, implementation details prevented packets larger than 32 bytes from
being encoded correctly.

In order to support those parts of the protocols that were used to collect
relevant data for this thesis, this restriction has been removed so that the
maximum length of messages now only depends on internal buffer sizes that

31

Chapter 4. Implementation 4.4. UID Collection

can be easily increased when needed.

The new commands which were added during the course of this work were
documented in the Proxmark III wiki [35] on the project’s website.

4.4 UID Collection

Before the start of this thesis, the existing firmware for the Proxmark III
already supported for the ISO 14443 Type A Card Select procedure. The card
is queried and the UID together with some additional data is passed to the
client. Figure 4.3 shows this procedure.

Client Proxmark III RFID Chip

1. Collect UID
2. Perform Card Select

3. UID
4. UID

Figure 4.3: Collection of UIDs using the Proxmark III. In order to query a large number
of UIDs from the same card, this procedure is repeated an arbitrary number of times by a
loop in the client software.

By implementing a function in the client which sends the same command to
the microprocessor multiple times, it has been made possible to collect a batch
of card UIDs in a single run without user interaction. The function has been
called cuids and has been made available under the hf 14a command subtree.
It takes the number of UIDs to collect as a single argument and prints them,
together with a timestamp from before and after the operation. This allows
for easy collection and further processing by scripts and programs.

4.5 PACE Nonce Collection

In order to collect the nonces generated by the card during PACE, the exist-
ing basic ISO 14443 functionality was used to execute the initial part of the
protocol. The procedure is illustrated in figure 4.4.

32

4.5. PACE Nonce Collection Chapter 4. Implementation

Client Proxmark III RFID Chip

1. Collect PACE nonce
2. APDU "Read Binary"

3. Content of file "SecurityInfos"

9. Nonce

4. Parse SecurityInfos

5. APDU "MSE: Set AT"

6. RAPDU "0x9000" (success)

7. APDU "G.A.: Get Nonce"

8. RAPDU nonce + "0x9000"

Figure 4.4: Collection of PACE nonces using the Proxmark III. Similar to the UID collec-
tion, a loop on the client side facilitates the sampling of larger numbers of nonces.

The software has been extended to perform the first part of a PACE handshake
after the ISO 14443 Type A Card Select procedure. It selects the card and
then queries it for supported PACE protocol version and algorithm identifi-
ers. It then uses this information to initialize the PACE protocol by sending
an MSE: Set AT APDU [19] to the card. Once the card indicates that the
initialization succeeded, the reader requests an encrypted random nonce by
issuing a General Authenticate: Request Nonce APDU [19]. After recep-
tion, the nonce is transferred to the client and the communication with the
card is aborted.

In particular, this is done by a protocol handler that verifies the result of each
performed step during the procedure. A parser was implemented to find the
necessary information in the card’s list of supported algorithms and paramet-
ers. At the time of writing, the parser only finds the values relevant for PACE,
but it has been written in a way that allows easy extension and reusability. If
the need arises, the results of the implementation can be used to extend the
Proxmark III software so that it supports the PACE protocol entirely.

The implementation of the nonce collection initiates PACE with the CAN as
the password. This prevents the card from locking up as would be the case if
the PIN was used.

33

Chapter 4. Implementation 4.6. T.A. Nonce Collection

4.6 Terminal Authentication Nonce Collection

To check whether the card would allow the initialization of the Terminal Au-
thentication Protocol before successfully completing a PACE handshake, an
MSE: Set AT APDU was issued by making use of the existing functionality.
The test showed that the card responds with an error code as expected, thus
no further investigation has been done on this matter.

If the Terminal Authentication Protocol had been accessible, it would have
provided another source of random numbers for analysis. It is however unlikely
that there are 3 different implementations of random number generators on the
Identification Card. Thus, it is assumed that the nonce generator for the PACE
protocol also handles the generation of nonces for the Terminal Authentication
protocol.

4.7 PACE Timings

By using the capabilities of the Proxmark III software that had already existed
together with the implementation of the PACE nonce collection, the firmware
and client have been extended to allow replaying of a captured PACE hand-
shake.

A protocol handler similar to that of the PACE Nonce Collection has been
established. In contrast to the latter, it does not use a parser but merely sends
saved command APDUs and handles the reception of response APDUs. Figure
4.5 shows a measurement using the implemented function.

5 APDUs in hexadecimal notation—e.g. 10860000027C0000 as the General
Authenticate: Get Nonce APDU—need to be entered into the Proxmark
III client software. They can be taken from an intercepted communication
with the same or a different card. These APDUs are then transferred to the
reader and are used to perform each step of the PACE protocol. The Proxmark
III replays one APDU at a time, verifies the status word included in the card’s
answer and continues with the next APDU.

While doing so, the reader measures the times it takes the reader to send and
the card to respond to each of the 5 APDUs used during the protocol execution

34

4.7. PACE Timings Chapter 4. Implementation

Client Proxmark III RFID Chip

1. APDU "MSE: Set AT"

6. Perform Card Select

2. APDU "G.A.: Get Nonce"

3. APDU "G.A.: Map Nonce"

4. APDU "G.A.: Perform Key Agreement"

5. APDU "G.A.: Mutual Authenticate"

8. APDU "MSE: Set AT"

9. RAPDU "0x9000" (success)

10. APDU "G.A.: Get Nonce"

11. RAPDU nonce + "0x9000"

7. UID

12. APDU "G.A.: Map Nonce"

13. RAPDU data + "0x9000"

12. APDU "G.A.: Perform Key Agreement"

13. RAPDU "0x6..." (error)

Measure duration

Measure duration

Measure duration

Measure duration

Measure duration

14. Measured durations

Figure 4.5: A replay of PACE APDUs using the Proxmark III. Although the chip usu-
ally responds with an error code of 0x6985 or 0x6A80 after the General Authenticate:
Perform Key Agreement APDU, the Mutual Authenticate APDU is still saved on the
Proxmark III for the unexpected case where the chip accepts the replayed data without an
error. In that case the last APDU is also sent and the duration is measured as well.

with a precision of 1µs. Upon completion, the times are passed back to the
client where they are printed for the user. If the card responds with a different
status word than 0x9000 (successful completion), the process is aborted and
the times measured up to this point are passed back and printed.

Because the Proxmark III software is not yet capable of performing a full
PACE handshake on its own, the APDUs that should be replayed need to be
collected using other soft- and hardware, e.g. by logging the communication
of the AusweisApp [3] or other software [20] and using a PC/SC-compatible
reader device.

35

Chapter 5
Analysis Methods

In this chapter, the methods used to analyze collected data are described in
detail. The random numbers are analyzed using two different approaches and
the timings of a PACE protocol execution using replayed messages are given
a closer look as well.

5.1 Random Number Analysis

The analysis of random numbers and random number generators is a complex
field where much work has been done in the past [30, 31, 7, 38]. Starting
with a naive approach, a random number generator is expected to produce
numbers within a certain interval with a uniform distribution. However, this
criterion alone is far from enough to ensure that the numbers are actually
unpredictable. The difference of subsequent numbers and the distribution of
single bit values for example are other aspects that can provide an adversary
with subtle information about the future values being given by the generator.

Two sources of random numbers have been found to be accessible on the Ger-
man Identification Card. They have been used to collect sample data that
allows an analysis of the random number generators implemented on the card.
For the analysis, two methods were used that have been shown to detect flaws
in existing random number generators in the past [38, 6]. These two methods

37

Chapter 5. Analysis Methods 5.1. Random Number Analysis

are described below.

5.1.1 3-dimensional Attractors

In 2001, Zalewski used 3-dimensional attractors to detect flaws in random num-
ber generators that provided initial sequence numbers for the TCP protocol
[38].

An attractor can be defined as the evolution of a dynamic variable a over time
t, expressed as a(t) (this is not nearly as precise as the definition of attractors
in mathematical literature [32] but suffices for its usage in this thesis). In this
case, the dynamic variable is the last generated number of a random number
generator.

At first, a sample set of random numbers is collected from the target generator.
This set ideally contains all possible numbers produced by the generator, but
in practice a set of 50,000 numbers has proven to suffice when dealing with
32-bit integers.

From the set an attractor is built by using a method called delayed coordinates.
From the 1-dimensional sequence of input numbers A = {a(1); a(2); a(3); . . . ;
a(|A|)}, 3-dimensional coordinates are calculated by defining

ax(i) = a(i)− a(i− 1)
ay(i) = a(i− 1)− a(i− 2)
az(i) = a(i− 2)− a(i− 3)
∀i ∈ [4; |A|] ∩ N

(5.1)

as the x, y and z coordinates, respectively.

The so gained set of points in 3-dimensional space provides the mentioned
attractor which is specific to the given generator.

For the test itself, 3 sequential random numbers are queried from the gen-
erator. These can be used to construct the y and z coordinates of a line in
3-dimensional space using formula 5.1. The integer x coordinates of all points
on this line are the possible values for the next number given by the generator.
Zalewski states “a widely accepted observation about attractors”, namely that
“if a sequence [of numbers from a random number generator] exhibits strong

38

5.1. Random Number Analysis Chapter 5. Analysis Methods

attractor behavior, then future values in the sequence will be close to the val-
ues used to construct previous points in the attractor” [38]. This means that
a weakness in the generator can lead to numbers being predictable by taking
points on the previously constructed line that are in or near the set of points
computed from the sample data. Figure 5.1 shows an example for this case.

Figure 5.1: An example of a 3d-attractor-based analysis of a random number generator.
The red line has been constructed by querying 2 numbers from the generator and computing
the coordinates using formula 5.1. If the generator is flawed in a certain way, the next
number (when combined with the 2 coordinates forming the line) will lead to a point close
those made from the sample data (in blue). This means that it will be close to the previous
value (the X coordinate will be close to 0).

In the analysis of the random number generators used for the TCP protocol’s
initial sequence numbers, Zalewski took a set of 5000 numbers that were on
the line and near the sample points. He called this set a spoofing set and used
it to guess the next initial sequence number used by the host by creating one
packet for each possible initial sequence number.

For the analysis of the random number generator implemented on the Identific-
ation Card, this technique can be used similarly. After taking sample data from
an arbitrary card and constructing the 3-dimensional attractor, 4 numbers are
queried from the same card. From the first 3 numbers, a line is constructed
using formula 5.1 and leaving the X coordinate variable. If there are only few

39

Chapter 5. Analysis Methods 5.1. Random Number Analysis

points in the attractor shape that are relatively close to the constructed line
and if the the fourth number is one of them, then the generator is flawed.

If this is true for the actual cards which are being used by the public, a tracking
attack could be mounted by querying 3 ISO 14443 UIDs or 3 PACE nonces
from a victim’s card and constructing a line by using formula 5.1 again. Using
this line, the next number to be returned by the generator could be predicted
with a certain confidence. A network of readers that query all cards in their
range continuously could look for one that returns the predicted number. This
could then be assumed to be the card of the victim, again with a certain
confidence (given by the generalized birthday problem [13]).

The reliability of the results gained by such an attack depends mainly on the
shape of the attractor and the correlation between the actual results and the
constructed attractor. If, for example, the attractor for the ISO 14443 UIDs
is a 24-bit (224) wide cloud (in X direction), then the results will not be useful
at all because it does not give a hint on subsequent numbers (24 of the 32
bits that form a UID are random). If, however, the size of the cloud or the
size of clusters within the cloud is very limited in X direction, the chances of
positively identifying a previously seen card are much higher.

5.1.2 Dieharder Random Number Test Suite

Dieharder [7] is a software suite created by Robert G. Brown and designed
for testing random number generators to find possible weaknesses. It incor-
porates a total of 31 individual tests at the time of writing. 18 of these are
reimplemented tests from the diehard software suite by Marsaglia [15], 3 are
reimplemented tests from the NIST STS suite [36] and 10 are various indi-
vidual tests by Brown and other persons. Of the 18 tests, 3 have been marked
as being “suspect” regarding their reliability and 1 has been marked as be-
ing entirely unreliable. This has not been proven, but the remaining tests
supposedly analyze enough different aspects of the generator to be sufficient.

The dieharder suite’s analysis is based on the principle of contraposition [6]. It
assumes that the tested random number generator is perfect. This assumption
forms the null hypothesis. Based on this assumption, certain further properties
of the numbers given by the generator are stated. As an example, sums over
sequences of 1-bit integers from an ideal random number generator would have

40

5.1. Random Number Analysis Chapter 5. Analysis Methods

a mean value of 1
2 and a standard deviation of 1

4 . The program now takes a large
number of such sums from the given random number generator and computes
the probability (called pvalue) of obtaining such values from an ideal one.
This is repeated a number of times and the resulting distribution of pvalues is
tested for uniformity. If this test yields a probability for the distribution being
uniform of less than a certain value (0.000001 by default), that means that
the probability of this generator being an ideal one is very low. Thus, the null
hypothesis is rejected. The exact calculation of the individual pvalues differs
from test to test, but the overall test for uniformity stays the same.

Obviously, even an ideal random number generator would fail a test from the
dieharder suite every now and then (for any finite number of test runs), but
the parameters like the amount of numbers in each sequence and the pvalue
threshold can be tuned to make this extremely unlikely. For the same reason,
even a weak generator can pass these tests and still be predictable, but the
number of different tests and again the customizable parameters make this
similarly improbable.

Subsequently, 3 of the dieharder tests are explained in more detail to give a
brief overview of the different aspects of analysis the suite tries to cover. The
descriptions are aggregated from the dieharder program’s output as well as the
individual whitepapers or test descriptions [30, 29, 36, 18].

The Diehard Birthdays Test

The diehard birthdays test is a random number generator test designed by
George Marsaglia for his diehard suite [30, 29]. It takes m integers in an
interval [1;n] from a generator. The numbers are ordered ascending and the

41

Chapter 5. Analysis Methods 5.1. Random Number Analysis

differences between each two consecutive values is computed:

Given
1 ≤ v1 ≤ v2 ≤ v3 ≤ · · · ≤ vm ≤ n

Compute
d1 = v1
d2 = v2 − v1;
d3 = v3 − v2;
d4 = v4 − v3;
. . .
dm = vm − vm−1

(5.2)

In this new sequence of numbers duplicates are counted and the number of
values that appear more than once is defined as a new variable

Y = |
m⋃

i=1
{di : ∃j 6= i : di = dj}| (5.3)

This random variable is assumed to be Poisson-distributed with λ = m3

4n
for

an ideal generator. Although this assumption is yet unproven, it is strongly
supported by the fact that most supposedly “good” random number generators
(that pass all other tests) do in fact exhibit this distribution when tested. Be-
cause of this knowledge, the actual distribution can be compared to a Poisson-
distribution to obtain the likeliness of this generator being flawed.

The name of the tests comes from the fact that it is inspired by and partly
based on the problem of duplicate birthdays, the probability of two persons
having the same birthday in a given set of people.

The default parameters for this test in the dieharder suite are as follows. 512
24-bit integers are generated and the duplicate spacings are counted. This is
repeated 100 times and the resulting distribution is analyzed to form 1 pvalue.
100 such pvalues are computed for the overall test. This nets in a consumption
of 15.36 MiB of random numbers for the complete test.

The STS Serial Test

The purpose of the Serial Test from the NIST STS suite [36] is to find bit-level
correlations in weak random number generators. For a given parameter m, it

42

5.1. Random Number Analysis Chapter 5. Analysis Methods

counts the occurences of each bit pattern of length m in the bitstring given
by the generator. Since the distribution of single bits should be uniform, the
distribution of the bit patterns should be uniform as well.

The exact calculation however is more than mere counting, though. When
counting the occurences in a non-overlapping manner—that is when dividing
the input into chunks of m bits each—the results might be different than when
counting in an overlapping manner. The bit sequence 11110001100110011010
1010011 for example will yield a count of 0 occurences of the bit pattern 000
when counting non-overlapping, but one can easily see that the pattern does
occur in the input (5th to 7th bit). This might lead to false rejection of a good
generator.

However, when counting overlapping bit-patterns, there is a significant correl-
ation between subsequent patterns—if the first 3-bit pattern of a sequence is
000, the second one can only be 000 or 001, obviously. To account for this cor-
relation in the calculated distribution, the test not only counts the occurences
of all patterns of length m, but also of those of length m− 1 and m− 2. The 3
distributions are combined in an overall statistic which follows a χ2 distribu-
tion with 2m−1 degrees of freedom for an ideal random number generator. The
exact formulae can be found in the test specification [36]. A special feature of
this test is that it produces two pvalues per run instead of just one.

With the default parameters of dieharder, all sequences of length 1-16 are
counted. For each length, 100000 samples are examined to generate one pvalue
and 100 pvalues are used for the overall statistic. Thus, the complete test for
all lengths consumes 170 MiB of random data from the generator, of which
the longest test—16 bit sequences—consumes 20 MiB.

The Dieharder Generalized Minimum Distance Test

This test, based on two tests from the diehard suite [29], was developed by
Fischler [18] and implemented by Brown for his dieharder suite [7].

The original tests by Marsaglia takes a certain number of random points from
the generator within a 2D square or a 3D cube of fixed size by interpreting
consecutive numbers as components of 2- or 3-dimensional coordinates. It
then calculates the minimum distance between 2 such points. These minimum

43

Chapter 5. Analysis Methods 5.2. Timing Analysis

distances taken to the power of 2 or 3 for the 2D or 3D tests, respectively,
should then be approximately exponentially distributed. By measuring the
actual distribution of the values from the tested generator and comparing it
to the known exponential distribution, a pvalue can be received for each set of
points.

Fischler proved that the exponential distribution used by Marsaglia was not
quite that of an ideal random number generator [18]. A correction had to be
included in the distribution depending on the number of dimensions used. The
revised distribution includes a calculated part of this correction. It does not
include the theoretically accurate correction, but is precise enough for practical
application not to give false results. Fischler also calculated the corrections
needed for up to 5 dimensions and showed what needs to be done to apply the
test for even more dimensions.

Brown used the results of Fischler’s work to implement a test for his dieharder
suite that applies the test for 2-5 dimensions [7]. The test uses the 32 bits to
specify one dimension of a coordinate. Each generated point thus consumes
4∗d bytes of random data, where d is the number of dimensions used. For each
number of dimensions from 2 to 5, 1000 pvalues are calculated and for each of
the pvalues 10000 points are generated. This means that for the complete test,
560 MiB of random data is consumed, the 5-dimensional test alone consumes
200 MiB. As with most other tests, these parameters can be varied, though a
number of dimensions lower than 2 or higher than 5 is not yet supported due
to the statistical corrections being unknown.

5.2 Timing Analysis

The analysis of timings in the PACE protocol is fairly straightforward. First,
a successful authentication using the PACE protocol is executed by using the
GlobalTester software [20] which supports the protocol and is able to create
log files including all data exchanged between the card and the reader. This
is repeated for a set of available cards, the command APDUs sent from the
reader device to the cards is extracted from the log files and saved.

Subsequently, the Proxmark III is used to replay the gathered APDUs to two
cards. It is analyzed as to whether the time it takes the card to respond to

44

5.2. Timing Analysis Chapter 5. Analysis Methods

each APDU differs between the sets of recorded packets. To have an approx-
imate measure of the deviation in timings, APDUs of each set are replayed
approximately 100 times and the timings within a set are accumulated. The
result should then show whether there is a reliably identifiable difference in
timings between the two traffic patterns.

45

Chapter 6
Analysis Results

This chapter focuses on the results gained by analysing the collected data using
the methods described previously.

For the analysis, a total of 464151 ISO 14443 UIDs and 278991 encrypted
PACE nonces have been collected from a sample Identification Card that is
not in productive use due to missing long-time availability of other cards. If
the results do not show a weakness in the implementation, it is thus assumed
that the Identification Cards used in public do not suffer from weaknesses that
had not already appeared on this sample card.

The collection of a single UID using the Proxmark III toolkit takes approxim-
ately 0.44 seconds and the collection of an encrypted PACE nonce takes ap-
proximately 1.02 seconds, resulting in net data rates of approximately 6.81B

s

and 15.69B
s
, respectively. Due to this, the amount of sample data available for

testing has been limited and some tests—i.e. from the dieharder suite—might
not provide sufficiently meaningful results. This is mentioned in the respective
explanations and further testing with larger data sets is recommended.

Timing analysis has been conducted with different cards of which most are
Identification Cards owned by existing persons and are actually in use. These
cards have been chosen randomly and are not known to be correlated in any
way.

47

Chapter 6. Analysis Results 6.1. 3-dimensional Attractors

6.1 3-dimensional Attractors

The 2 accessible random number sources have been subjected to attractor
analysis as explained in chapter 5.1.1. The interpretation of the obtained
results is presented subsequently.

6.1.1 ISO 14443 UIDs

The collected ISO 14443 UIDs have been plotted into a 3-dimensional graph
using formula 5.1.

Figure 6.1: The resulting graph for the attractor of the ISO 14443 UID generator. As one
can immediately see, the construct is a parallelepiped that has a width of 224 in X direction
at every point.

Figure 6.1 shows the resulting attractor. Because of the parallelepiped having

48

6.1. 3-dimensional Attractors Chapter 6. Analysis Results

a width of 224 in X direction at every point, one can make no prediction of
future UID values by using the technique of Zalewski [38]. No matter where the
line created by combining two received UIDs is located, there are 224 possible
values for the next UID. The random number generator used in the German
Identification Card thus does not experience attractor behaviour and can be
considered sufficiently strong regarding this aspect.

6.1.2 PACE Nonces

For this analysis, the encrypted nonces from the PACE protocol have been,
similarly to the UIDs, plotted to show the attractor behaviour of the underlying
random number generator.

Figure 6.2: The attractor figure for the encrypted PACE nonces. The graph looks similar
to that of the ISO 14443 UIDs except that the width in X direction at every point is 265536.

49

Chapter 6. Analysis Results 6.2. Dieharder Random Number Analysis

Figure 6.2 shows the resulting figure. As with the ISO 14443 UIDs, the at-
tractor shape is a parallelepiped and thus no prediction can be done on sub-
sequent PACE nonces. This generator, too, can be considered sufficiently
strong regarding 3-dimensional attractor behaviour.

6.2 Dieharder Random Number Analysis

The collected random numbers have been analyzed using the dieharder random
number test suite detailed in chapter 5.1.2. The results of the analysis and
considerations that have to be made based on these results are shown here.

The default dieharder parameters have been used for the tests initially, but
have been adapted to fit the amount of available sample data where possible if
the tests indicated anomalies in the input. The results of 4 tests not included in
the following paragraphs have been disregarded due to the fact that Browning,
the author of the test suite, classifies them as being “suspect” or “broken”.

As mentioned in the explanation of the dieharder suite in chapter 5.1.2, the
software applies the principle of contraposition. The null hypothesis is that
the tested generator is an ideal random number generator, which means that
it produces an unpredictable and uniformly distributed sequence of numbers.
If the test results show a distribution that is significantly different to that of
a theoretical, ideal generator, the null hypothesis is considered to be rejected
with a certain confidence value—at least 1− 10−6 in the case of the dieharder
suite. The confidence values are computed by the software and are based on
the distribution of individual pvalues (see chapter 5.1.2.

If a test shows a distribution that is similar to that of an ideal generator, this
does not confirm the null hypothesis. It merely suggests that the generator
does not exhibit the weakness that was tested for. Because of this, passed tests
are not examined further and the analysis focuses on those tests that fail.

6.2.1 ISO 14443 UIDs

The first test that the sampled UID data fails is the Diehard Overlapping
5-Permutations Test with confidence > 1 − 10−8. In this test, overlapping

50

6.2. Dieharder Random Number Analysis Chapter 6. Analysis Results

5-tuples of 32-bit integers are taken from the input data and the ordering of
their elements is observed—which element is the largest, the second largest,
and so on. There are 5! possible orderings in each 5-tuple and the distribution
of these orderings over the complete input data is known for an ideal random
number generator [30]. Thus it can be compared to the measured distribution
of orderings in the input data.

TheDiehard Overlapping 5-Permutations Test consumes 1 million 32-bit
integers per pvalue by default, which means that for the 100 pvalues generated
by the overall test, 400 MiB of input data are read. The collected UIDs however
only total a little less than 1.4 MiB, so the result might be biased due to the
same numbers being used more than once even within a test for a single pvalue.
Running the test on sequences of only 100000 integers per pvalue leads to a
pass although values are still being used more than once during the complete
run. Further tests on larger sets of input data should be performed to verify
that the generator passes the test using the default parameters, but there is
little reason to assume that it will fail.

The Diehard 6x8 Binary Rank Test classifies the generator as “weak”
using the default parameters, confidence for rejecting the null hypothesis is
0.99688366. The test takes one byte of each of 6 consecutive 32-bit integers,
builds a 6x8 binary matrix out of these and determines the rank of that matrix.

A similar explanation as for the Overlapping 5-Permutations Test can be the
cause here, as the data passes the test when using half the number of samples
per pvalue than with the default parameters (50000 instead of 100000). The
test consumes 2.4 MiB per pvalue and 240 MiB overall. Again, larger sets of
input data need to be tested to get a more thorough decision on the quality of
the generator.

Exactly the same observation can be made for the Diehard Count the 1s
(stream) Test, which counts the number of 1 bits in bytes of an overlapping
stream provided by the input data. Again, the test classifies the generator
as “weak”, rejecting the null hypothesis with a confidence of 0.99974415, and
halving the number of samples per pvalue (128000 instead of 256000) leads to
a pass. For a more meaningful test result, the input data should be at least
3.2001 MiB.

The Diehard Squeeze Test takes the number 231 − 1 = 2147483647 and

51

Chapter 6. Analysis Results 6.2. Dieharder Random Number Analysis

multiplies it consecutively with floating point numbers from the generator in
the interval [0; 1[, rounding up intermediate results. It then counts the number
of factors n needed to reach 1, as in equation 6.1.

Given a sequence X of random numbers
X = X1;X2;X3; . . . ∈ [0; 1[
Define Yi by induction:
Y1 = 232 − 1
Yi+1 = bYi ∗Xic
Compute
n = min {j : Aj = 1}

(6.1)

By default the test finds 100000 such numbers n to generate one pvalue and
the overall data consumption can not be predicted due to the fact that the
number of factors needed depends on the input data itself. The test fails using
the default parameters and the pvalues are not distributed at all but all of them
fall in the interval]0; 0.1]. However, searching for only 5000 numbers leads to a
passed test although the 1.4 MiB large input file has to be rewound 691 times.
The significant change in the distribution of pvalues between the two parameter
values indicates that a test with a large enough input file (approximately 557
MiB are needed) might lead to interesting results. The confidence for rejecting
the null hypothesis here is > 1− 10−8.

Another test that marks the random number generator as “weak” is the Die-
hard Runs Test, rejecting the null hypothesis with a confidence of 0.99888991.
It counts the lengths of monotonic decreasing and strictly monotonic increas-
ing sequences of 32-bit floating point numbers taken from the input data and
compares their distributions to those of an ideal generator. The distribution
of pvalues for monotonic decreasing sequences is classified as “weak” whereas
that for strictly monotonic increasing sequences passes the test.

The test examines sequences of 100000 numbers for each of the 100 pvalues
and thus consumes 40 MiB of data. When changing the parameters so that
the existing data is only used once (i.e. examining sequences of only 3100
numbers), the test still classifies either distribution as “weak” or even “failed”.
Using different values for either the sequence lengths or the number of pvalues
collected often still leads to “weak” or “failed” results. This indicates the
possibility of the generator failing the test unambiguously when using a large
enough sample size. Further examination of the generator using this test is
highly recommended.

52

6.2. Dieharder Random Number Analysis Chapter 6. Analysis Results

The Diehard Craps Test plays the dice game craps by using the data to
generate dice rolls. 32 bits of data are converted to one dice roll and the
number of wins as well as the number of throws necessary to end a game (games
are aborted after 21 rolls maximum) are counted. The test thus produces two
statistics from a single run, similar to the Diehard Runs Test. In contrast to the
Runs test however, both statistics reject the null hypothesis with confidence
values of > 1 − 10−8 each. Another difference is that smaller numbers of
samples—playing 10000 games instead of 200000 to produce one pvalue—lead
to the test passing the data. As with the other tests, a repetition with a larger
sample set should be conducted to verify that the generator in fact does not
show a weakness regarding this test, which cannot be safely guaranteed as of
now but is expected.

Using the default values, 200000 games are played for each pvalue and each
can consume up to 42 numbers of 32 bits size (21 rolls with 2 dice). To make
sure there is enough data for the test, the sample set should thus include 33.6
MiB of data from the generator.

A result very similar to that of the squeeze test is produced by the Marsaglia
and Tsang GCD Test, which computes the greatest common divisor of a set
of 32-bit integers as well as the number of steps required for the computation
using Euclid’s Method [10]. While the test passes for small sets of numbers
to generate a pvalue such as 10000, the pvalues are concentrated within the
interval]0; 0.1] for the default parameter value of 10 million. Confidence for
rejecting the null hypothesis is thus > 1 − 10−8 This can be explained by
simply computing the data consumation, though. 10 million 32-bit integers
equals 40 MiB of data required for the generation of a pvalue. This means that
in every test run, the same numbers are used (multiple times) and thus the
results are obviously the same. Consequently, the test is unlikely to fail when
being given large enough sample sets—4 GiB are needed—but this of course
is to be verified.

The STS Monobit Test is very similar to the Diehard Count the 1s (stream)
test with the only difference being that it does not use overlapping bytes.
The result is basically the same, the default number of 32-bit values to count
the 1 bits in for each of the 100 pvalues is 100000 and the test fails with this
parameter setting. It rejects the null hypothesis with a confidence of> 1−10−8.
Using a lower value such as 10000 leads to a passed test and is likely to be the
outcome of a test with a large enough data set—4 MiB are sufficient.

53

Chapter 6. Analysis Results 6.2. Dieharder Random Number Analysis

Although sharing the same name as the Diehard Runs Test, the STS Runs
Test has little in common with the former. It counts the lengths of sequences
in which all bits are equal. The sequences in which such equal sub-sequences
are counted are 400000 bytes in length by default and 100 such sequences are
analyzed. The pvalues concentrate on the interval]0; 0.1] with a few being
within]0.1; 0.2] and the null hypothesis is thus rejected with a confidence
of > 1 − 10−8. Decreasing the length of the observed sequences to 12400
bytes leads to a “weak” classification and the confidence for rejecting the null
hypothesis is 0.99990854. The distribution of pvalues also looks visually biased,
so another test with the required 40 MiB of sample data is highly recommended
and could reveal a weakness in the generator.

The STS Serial Test is very intuitive by principle. It determines the distri-
bution of all possible n-bit patterns within a sequence from the generator. It
does so using overlapping samples and uses a reference statistic that accounts
for the correlation between subsequent samples. The test is executed for values
of n ∈ [1; 16]∩N, each time 100 sequences of 400000 bytes are sampled by de-
fault. Using these values, a lot of sub-tests fail (i.e. for n ∈ 1; 2; 3; 4; 5; 12; 15)
or result in a “weak” distribution (i.e. for n ∈ 6; 10; 11; 16), but all subtests
pass when using smaller values such as 40000 samples per pvalue. It is again
unlikely that these tests fail unambiguously when being provided with the
required 640 MiB of data, but this cannot be guaranteed.

The author of the dieharder suite implemented a modified version of the STS
Serial Test that does not use overlapping samples. This is called the RGB
Bit Distribution Tests. The parameters are the same except that it is only
executed for values of n ∈ [1; 12] ∩ N. Similar to the STS Serial test, a lot
of subtests fail with the default values but pass for a sample size of 40000.
Correspondingly, the test should be repeated with 480 MiB of input data but
will most likely pass as well.

As detailed in chapter 5.1.2, the Dieharder Generalized Minimum Dis-
tance Test measures the minimum distance of n-dimensional points and com-
pares their distribution to the expected one. Dieharder tests for n ∈ 2; 3; 4; 5
by default, sampling 10000 points for each of the 1000 pvalues every time.
Using these parameters, the tests fail or give a “weak” result, rejecting the
null hypothesis with confidences of 0.99929643 to > 1 − 10−8. When using
small parameters such as 1000 sample points and 100 pvalues per subtest, the
collected data suffices and the tests pass. The total of 1.12 GiB of data needed

54

6.2. Dieharder Random Number Analysis Chapter 6. Analysis Results

to run the test with the default parameters differs from the currently available
1̃.4 MiB by several orders of magnitude, but there is little reason to assume
that the result would be different.

A test similar to the Diehard Overlapping 5-Permutations Test exists in the
dieharder suite, called the RGB Permutations Test. The only difference to
the test from the original diehard suite is that this one does not use overlapping
samples and the tuple size can be varied. By default, it is executed for tuples of
size n ∈ 2; 3; 4; 5 and for each subtest, 100 pvalues are computed by observing
the ordering of 100000 tuples. The test classifies the sample data as “weak” for
values of n ∈ 3; 4 and rejects the null hypothesis with confidence 0.99998931
and 0.99999320, respectively. The fact that the test passes the samples for
values of n ∈ 2; 5 as well as for all values of n ∈ 2; 3; 4; 5 when observing only
10000 tuples per pvalue indicates that this is merely a result of the small input
set. A repetition of the test on 40 MiB of sample data is likely to pass.

The RGB Lagged Sums Test was designed to search for bit-level correla-
tions in the generated numbers that do not appear until after a certain amount
of data has been queried. It adds up 32-bit floating point values in the interval
[0; 1] from the data given by the generator, skipping a certain amount n of num-
bers between subsequent summands. The expected result is Numberofsummands

2 .
The default parameters cause the test to add 1 million samples 100 times,
skipping n = 0 to n = 32 values in between each two. This way, 33 statist-
ics are assembled. The result looks interesting at the first sight, because the
distributions of pvalues look very similar regardless of the value for n—the
pvalues are concentrated on the interval]0.3; 0.5]. This can however be easily
explained when examining the amount of random numbers consumed by the
test and the amount of data provided.

1392453 bytes of input data are available and for any parameter n and the
test consumes multiples of 4000000 ∗ (n + 1), n ∈ [1; 33] ∩ N bytes for every
pvalue. This means that the data available for sampling is the same during
every pvalue computation, the only thing that changes is which subset of this
data is taken into account for the sum. There are n possibly different subsets
available (only every (n+1)th value is added) for each pvalue, but 100 pvalues
are generated. It follows that there are far less possible test outcomes than
there are pvalues computed, so the reason for the concentration of pvalues
is obvious. When executing the test with only 100 samples per pvalue, the
number of possible test outcomes increases to above 100 for all values of n and

55

Chapter 6. Analysis Results 6.2. Dieharder Random Number Analysis

the data passes without anomaly. It is likely that the test will succeed with the
default parameters when being provided the necessary 211.2 GiB, although the
huge difference between the available and the recommended amount of data
suggests that this prediction is not necessarily reliable and should be verified
with sizes in the order of 500 MiB at least.

Similar to the RGB Bit Distribution Test for 8-bit tuples, the DAB Byte
Distribution Test measures the distribution of indivdual byte values. Its
unique characteristic is that it does so for each byte of a 9-byte-tuple indi-
vidually. That means that it keeps track of 9 individual byte distributions to
search for byte-level correlations in the generator that only appear in regular
intervals. The second difference to other tests is that this test produces only
a single pvalue which also serves as the overall test result. To make sure this
value is adequately meaningful, the number of examined byte tuples is very
high—51.2 million by default. The length of the tuples can only be varied by
recompiling the software suite. While the test rejects the null hypothesis with
a confidence of > 1 − 10−8, it passes when lowering the amount of sampled
tuples to a value of 100000. Because of considerable overhead—the test reads
4 bytes at a time from the generator or file but uses only 3—614.4 MiB of data
are needed for a thorough test. The generator is though likely to pass this.

A discrete cosine transformation [1] forms the basis of the DCT (Frequency
Analysis) Test. It is applied to a block of 256 32-bit values and the largest
result is saved. This procedure is repeated on 50000 blocks and the resulting
maximum values are tested for uniformity and statistical independence. Just
as the DAB Byte Distribution test, it only produces one single pvalue as the
overall result and the test rejects the null hypothesis with a confidence of
> 1−10−8 for the default parameters. Running the test on only 5000 blocks of
32-bit values gives no rejection and is the likely outcome of it being run with
the required 51.2 MiB of sample data.

The test suite includes 2 tests related to binary trees that function very similar
in principle. The first test, called the DAB Fill Tree Test fills a fixed-depth
binary search tree with 32-bit samples from the generator. The first item
is placed at the root node and the subsequent samples are inserted at the
child nodes by the well-known rules for binary search trees. As soon as the
test would have to place an item in a way that the depth of the tree would
rise above the fixed threshold of 32, the insertion is aborted and the current
number of nodes in the tree is saved together with the position at which the

56

6.2. Dieharder Random Number Analysis Chapter 6. Analysis Results

insertion failed. By repeating this 15 million times, a large number of samples is
gathered. As an additional mechanism to find weaknesses in generators where
only certain parts of a 32-bit value are biased, the input values are rotated by
cyclic shifting. The positions are then checked for uniformity and the tree sizes
are compared with a distribution that was estimated empirically, probably by
using a generator that passed all other tests. The latter can of course not be
guaranteed to be the exact theoretically ideal distribution, but is considered
as such as long as there is no proof of the contrary. This test again fails for
the default parameters and rejects the null hypothesis with a confidence of
> 1 − 10−8, but passes for smaller ones (100000 trees). Due to the dynamic
nature, the total consumption of input data using the default values can only
be estimated and lies between 1.98 GiB (insertion fails at the 33rd value in
each tree) and approximately 257.7 PiB (every tree is filled to the maximum
before the insertion fails). It is unrealistic to get enough sample numbers from
an Identification Card for the upper bound, but tests using larger samples are
highly suggested due to the big difference between the present amount and the
lower bound.

The second of the 2 tree-related tests is the DAB Fill Tree 2 Test. It
starts with an single-node binary tree of fixed depth (128 levels). It then reads
bits from the generator subsequently and continues down the left or the right
branch, depending on whether the bit is a 1 or a 0, respectively. Whenever
going down from a leaf node, a new node is inserted and the path restarts at
the root. When an existing node is visited, the read bit is simply discarded.
Once the tree would reach a depth of 129, the insertion that would cause this is
aborted and again the number of nodes and the position of the failed insertion
are saved. In total, 5 million trees are filled by default. Similar to the former
test, the tree sizes are compared with an empirically estimated distribution
and the positions are tested for uniformity. The results are similar as well,
the test fails for the defaults—confidence for rejecting the null hypothesis is
> 1− 10−8—and passes for smaller sample sets (25000 trees). The bounds for
data consumption are even more extreme here, the lower bound being 80.625
MiB and the upper bound being approximately 2.13 ∗ 1044 bytes.

The last test of the dieharder suite and the last test that the UID samples fail
to pass is the DAB Monobit 2 Test. It works, as the name suggests, similar
to the STS Monobit test, but it uses small blocks instead of long sequences to
count the 1-bits in. The size of the blocks is calculated by the test itself and
depends on the generator, the reasons for this are unknown. 65 million blocks

57

Chapter 6. Analysis Results 6.2. Dieharder Random Number Analysis

are analyzed by default and the present data lead to a block size of 48 bytes.
This nets in a data consumption of 3.12 GiB and as can be expected, the test
rejects the null hypothesis. The result is interesting though, because the over-
all pvalue is 1, which means that the result perfectly matches the theoretical
distribution of an ideal random number generator. This is indeed no good sign
for an actual implementation, because the fact that the generator exhibits a
perfectly binomial distribution allows for a predictability of its values. How-
ever, the result is entirely different with smaller numbers of examined blocks.
For parameters where the provided 1.4 MiB suffice—the test then uses 31000
blocks of 20 bytes each, which is far less than the available amount—the test
passes with a pvalue of 0.63453322. The implications of these results are not
entirely clear, due to the fact that the documentation of the test is scarce and
there is not enough data available to run the test with its default parameters.

6.2.2 PACE Nonces

The results of the dieharder suite when being run on the PACE Nonces indicate
that the manufacturers possibly use the same or a very similar random number
generator as the one responsible for the ISO 14443 UIDs. Many of the tests
that the UID data failed—e.g. the STS Monobit Test or DCT (Frequency
Analysis) Test—pass the PACE Nonces. Most probably this is due to the
much higher amount of data being available. As an example for the reason
behind this, the chance of a bit with the value 1 occuring at least once in a
sample set of 2 bits is 0.75. The chance of occuring at least once in a sample
set of 1000 bits is 1 − 2−1000. If one now reads 2 bits from a random number
generator and these bits both have the value 0, the confidence of rejecting the
null hypothesis should be 0.75, which is not enough for the dieharder suite to
claim that a weakness has been found. However, running a test that expects a
set of 1000 bits on the same data will lead to a rejection of the null hyptothesis
with a confidence of 1− 2−1000, which is far more than enough for the test to
fail although the generator did not change.

Just like earlier, most of the tests that reject the null hypothesis pass if the
parameters are adapted to fit the amount of present sample data.

This claim is supported by further examining the result of the Diehard
Squeeze Test. Again, the pvalues are concentrated on the interval]0; 0.1]

58

6.3. Timing Analysis Chapter 6. Analysis Results

when using the default parameters and again the test passes when searching
for only 5000 values. The recommendation is likewise, a large enough sample
set should be tested to gain certainty of the question whether this is due to a
weakness in the design or implementation.

TheDiehard Runs Test also rejects the null hypothesis for the PACE Nonces
using the default parameters, the confidence is 0.99972851. However, in con-
trast to the anomaly observed with the UID samples, the test passes when
using sequences of at least 9000 elements and variation of the length does not
lead to “weak” results when keeping it above 9000. The noteworthy beha-
viour observed during the tests on the ISO 14443 UIDs does occur when using
sequence lengths of less than 9000. This indicates that the effects are actu-
ally an effect of the small sample size, provided that the two random number
generators really are the same.

A major difference in test results between the two sources is reported by the
STS Runs Test. While it rejected the null hypothesis rather consistently for
the UID samples, the PACE Nonces consistently pass even for sequence lengths
as small as 1000. This can mean one of two things. Either the two sources are
supplied by two different random number generators or the remarkable results
of the UID analysis is due to the sample data appearing biased by chance, which
is entirely possible. As of now, it seems that the second statement is more
probable, since the other test results rather suggest that the two generators
are the same.

The remaining test results are, as stated, similar to those of the UIDs. There
is not enough sample data available to run most of the tests with their default
parameters, but running them with accordingly smaller values suggests that
the generator does not show any of the weaknesses the suite checks for.

6.3 Timing Analysis

Using the newly implemented capabilities of the Proxmark III Toolkit, timings
of the PACE protocol were sampled using replayed messages of previously
captured executions.

An execution of the PACE protocol consists of 5 APDU-pairs being exchanged

59

Chapter 6. Analysis Results 6.3. Timing Analysis

between the reader device and the card—each consisting of a Command APDU
and a Response APDU. When using replayed messages, the card responds to
the 4th command APDU with an error message and prevents the replay of the
5th command APDU. The first two APDU pairs mereley set up the protocol
and transfer an encrypted nonce, no information specific to the card at hand
is included in them. Thus, it only makes sense to measure the timings of the
3rd and 4th APDU pairs.

For this analysis, a total of 12 Electronic Identification Cards have been used,
denoted here as cards A to L. Card F is the sample already used as data source
for the random number analysis and the others are Identification Cards owned
by existing persons. A successful execution of the PACE protocol has been
performed with cards A to F using GlobalTester [20] and the APDU data has
been extracted from the log files. The Proxmark III Toolkit has then been
used to replay the collected APDUs to cards A and B and the relevant timings
have been recorded. Card A was subjected to replayed APDUs of cards A,
C, D, and E and card B was subjected to replayed APDUs of cards B, C, D,
and E. The cards that the APDUs were taken of are called source cards in the
following paragraphs and the cards the these APDUs were sent to are called
target cards. For every pair of target and source card 100 timing samples were
taken to account for deviation caused by the communication medium.

The timing data has been visualized using box plots. Red horizontal lines
show the median values and blue boxes indicate the interval in which 50% of
the samples are located. Black bars outside these boxes reach to the absolute
minimum and maximum values.

6.3.1 Map Nonce APDU timings Per Card Pair

At first, the Map Nonce APDU timings were gathered. Figure 6.3 shows their
distributions.

As one can see in the plot, there are differences in the timings between APDUs
from the same card (A-A and B-B) and from different cards (A-C, B-C etc.).
However, the differences can not be used to identify a card, because they take
negative as well as positive values and seem to have no apparent correlations.
When being presented this plot without the labels on the X-axis, one could
not identify which timings belong to a matching card pair (A-A or B-B) and

60

6.3. Timing Analysis Chapter 6. Analysis Results

Figure 6.3: The timings of replayed Map Nonce APDUs. The times were measured from the
point where the Proxmark starts sending the command APDU to the point where it finished
receiving the response APDU.

which do not.

Although the difference of timings for one target card (e.g. A-A, A-C, A-D,
A-E) do not seem to allow the identification of the card, it is obvious that
the two different target cards A and B have a rather large difference in their
overall timings. A detailed examination of this follows.

6.3.2 Perform Key Agreement APDU Timings Per Card
Pair

The second pair of APDUs, namely for the Perform Key Agreement step of
the protocol was given the same timing analysis. Figure 6.4 shows their dis-
tributions.

The plot shows similar characteristics to that of the Map Nonce APDUs. While
there are differences in the timings for each target card, these are not recogniz-
able without the knowledge of the labels and thus do not allow an identification

61

Chapter 6. Analysis Results 6.3. Timing Analysis

Figure 6.4: The timings of replayed Perform Key Agreement APDUs. The durations were
measured in the same way as the Map Nonce APDUs.

of the card based on these features. However, similarly to the first timing ana-
lysis, a relatively large difference lies between the overall timings of the two
target cards. This suggests that cards might be identifiable by their response
time to any given set of replayed command APDUs, regardless of their source.

6.3.3 Overall Response Times Per Target Card

To find out whether the observed timing patterns are unique for one card
among a larger set, Every available card was subjected a timing analysis using
both APDUs of a communication with the card itself as well as APDUs from
different cards. For each card, the timings of all 4 performed PACE steps
were recorded, since the timing characteristics do not seem to be related to
the content of the APDUs, as discovered in chapters 6.3.1 and 6.3.2. Figure
6.5 shows the measured times.

There is a special property of the timings that is not clearly visible in the figure
but can be seen in the numerical data which has been exemplarily summarized

62

6.3. Timing Analysis Chapter 6. Analysis Results

in table 6.1 for the Get Nonce step. The intervals between maximum and
minimum durations overlap for some cards (e.g. cards E and J for the Get
Nonce step), but this similarity is not consistent through all steps. As figure
6.5 shows, cards E and J show quite different characteristics during the MSE:
Set AT step.

Target card Median Arithmetic mean Minimum Maximum
A 63898 µs 63882 µs 63778 µs 63918 µs
B 65856 µs 65847 µs 65756 µs 65876 µs
D 82086 µs 82047 µs 81256 µs 82596 µs
E 84076 µs 84072 µs 83926 µs 84556 µs
F 215328 µs 215261 µs 214298 µs 215498 µs
G 101434 µs 101094 µs 96126 µs 103584 µs
H 80406 µs 80382 µs 80086 µs 80596 µs
I 81296 µs 81283 µs 81036 µs 81526 µs
J 84056 µs 84085 µs 82936 µs 85186 µs
K 83076 µs 83081 µs 82656 µs 84376 µs
L 60268 µs 60276 µs 60228 µs 60308 µs

Table 6.1: Numerical timing data for the Get Nonce step. As can be easily seen, the
deviation intervals of the different cards rarely overlap, which results in a high entropy of
these timing characteristics.

To mathematically express the timing characteristics of a single card, one can
write the deviation intervals as two vectors. The vector min = (min1;min2;
min3;min4) consists of the minimum timings and the vector max = (max1;
max2;max3;max4) of the maximum timings of the four individual steps. As an
example for card L, according to table 6.1, min2 = 60228 and max2 = 60308.
To check whether a newly measured set of four timings v of an unknown card
matches a specific card of which the characteristics are known, one would then
compute the differences max− v and max−min. If each element of max− v
is less than or equal the corresponding element of max − min, all measured
timings lie within the ranges that were observed for the known card. This
means that the newly measured card is probably the same as the known.

Given the fact that card F is a sample card that is not in productive use,
existing cards seem to show response times within a range of approximately
30 to 120ms, depending on the step. The deviations from the median for one
card and one step seem to be no more than 1ms usually.

63

C
hapter

6.
Analysis

Results
6.3.

T
im

ing
Analysis

64

6.3.
T
im

ing
Analysis

C
hapter

6.
Analysis

Results

Figure 6.5: The measured timings for different Identification Cards. The boxes and absolute minimum/maximum values are
barely visible for some cards due to the large scale. This however shows that the cards are easily recognizable by their timing
patterns and that the deviations are relatively small compared to the differences between the individual cards. For the MSE: Set
AT step, card F has been tested three times by placing it next to the Proxmark III’s antenna in different ways. This was done to
see whether the placement of antenna and card has any influence on the timings. The figure as well as the numerical data show
that this is not the case.65

Chapter 6. Analysis Results 6.3. Timing Analysis

Theoretically, 15 to 60 non-overlapping deviation intervals per step are thus
possible. Taking into account for all four steps, approximately 2 million dis-
tinct timing characteristics (in the form mentioned above) are possible. The 2
million distinct characteristics would allow for a certain recognition of a card
by examining only a single execution of a PACE replay. If an attacker has the
time to perform multiple of these replays, he can even estimate the deviation
intervals and overlapping ranges between different cards are less of a prob-
lem. This would further increase the chances of success for an attack. During
the test, no two cards showed the same characteristics in all four steps. This
indicates that a tracking attack is in fact possible.

While the numbers look extremely high at the first sight, one has to consider
the generalized birthday problem [13] when calculating the chances of posit-
ively recognizing a previously seen cards. If there are 2 million distinct timing
characteristics, the chance of two cards showing the same in a set of 2000 are
already above 60%. Within a set of 1000, it is still above 20%.

This observation however shows that the recognition of a previously seen Iden-
tification Card is possible within a set of several hundred with only a small
chance of a false positive. The exact numbers of the actually existing distinct
timing characteristics can be estimated with a much larger set of Identification
Cards to sample from, but the experiments so far indicate that they indeed lie
within the range of several hundred thousands.

66

Chapter 7
Summary

This chapter summarizes the results of the analysis, explains the implications
of these findings and gives perspectives as well as recommendations for future
work on this research field.

7.1 Summary of Analysis Results

The random number generators employed in the new German Identification
Cards seem to offer randomness and unpredictability well enough to thwart
attempts to trace cards based on previously observed patterns or to even mount
attacks on the cryptographic protocols. There are a few inconclusive test
results and most of the tests should be repeated with much larger sample
sets, but overall the strength of the generators can be considered adequate.
They have passed many tests that are known to have shown weaknesses in
other generators and that test for a large variety of different properties of the
produced values. It is assumed that both the ISO 14443 UIDs as well as the
PACE nonces are produced by the same random number generator, due to the
largely similar results and the benefits of this solution in form of less work,
less risk of errors in the implementation and thus a lower production price for
manufacturers.

The timings of replayed APDU batches did not reveal a weakness like the one

67

Chapter 7. Summary 7.2. Future Work

discovered in the implementation of the BAC protocol [11], but a different flaw
has been uncovered within the course of the analysis. Different cards seem to
exhibit different timing characteristics alltogether, regardless of the content
of the transmitted APDUs. This allows an attacker to sample timing data
from a victim’s Identification Card and later identify the card remotely via
the observed response durations among a set of several hundred other cards.
The only thing to do is to replay APDUs of a PACE handshake to any cards in
the range of a reader device and observe the response times. Once a card shows
similar response times to that of the victim, it is likely to be the same. No
knowledge about the victim at all is required for this method and the hardware
needed to perform it is available as well as affordable for almost any person.
The chance of error when using this method can be computed in advance and
introduces the danger of possible adversaries who scale their attacks based on
the needed precision.

7.2 Perspectives and Recommendations for
Future Work

There are multiple possibilities of continued work on traceability of electronic
documents. One of them is the confirmation and explanation of the findings
of this thesis. For example, the anomalies found in the timing patterns of
Identification Cards can be verified and completely determined using larger sets
of cards and laboratory-grade equipment. Features like ambient temperature
can influence the computational power of the RFID chip and influence the
response times. Access to implementation details of the RFID chip’s software
or a cooperation with the BSI and manufacturers can help make certain that
all aspects are accounted for.

If the claims made here are found to be valid, the precise consequences of them
can be identified. The size of sets that allow for a recognition of previously
seen cards as well as the exact error rates of this attack vector can be worked
out.

Once the numerical properties of the attack are known, it can be combined
with other traits of the Identification Card or with similar attacks on other
RFID chips to further decrease the chances of error. The card type distinction

68

7.2. Future Work

mentioned in chapter 3.2 does not offer enough entropy to allow a traceability
attack alone, but knowledge gained by it can be used in other attacks to boost
their precision and reliability. The entropy is assumed to be in the range of 2–5
bits, due to the fact that only three different types of cards observed during the
tests and there is no gain for the manufacturers to introduce many differences.
Different RFID chips that are carried around by people can also offer similarly
useful information.

Lastly, the same attack can be applied to other chips, such as a bank card’s
contactless payment option which is becoming more and more popular in Ger-
many at the moment [2]. RFID chips using cryptographic protocols are espe-
cially vulnerable to this, as different cards can use different encryption keys
that in turn can have influence on the computational effort needed to respond
to commands and thus affect the response times of the device.

69

Bibliography

[1] N. Ahmed, T. Natarajan, and K.R. Rao, Discrete Cosine Transform,
IEEE Transactions on Computers C-23 (1974), no. 1, 90–93.

[2] Eva Allar, GeldKarte kontaktlos: Pünktlich zur 2. Halbzeit dank Chip,
March 2009, available at https://www.geldkarte.de/_www/de/pub/
geldkarte/presse/presse-informationen/pressemitteilungen/
archiv/i9589_1_pm_geldkarte_kontaktlos_bayer04.php, accessed
08.11.2012.

[3] https: // www. ausweisapp. bund. de , online, accessed 13.10.2012.

[4] Harald Baier and Tobias Straub, Vom elektronischen Reisepass zum Per-
sonalausweis: RFID und personenbezogene Daten – Lessons Learned !?,
Im Focus das Leben, Beiträge der 39. Jahrestagung der Gesellschaft für
Informatik e.V., Lecture Notes in Informatics, vol. P-154, Gesellschaft fur
Informatik e.V. (GI), September 2009, pp. 1717–1731.

[5] Mike Bond, Omar Choudary, Steven J. Murdoch, Sergei Skorobogatov,
and Ross Anderson, Chip and Skim: cloning EMV cards with the pre-play
attack, ArXiv e-prints (2012).

[6] Robert G. Brown, Dieharder: A Gnu Public License Random Number
Tester, included as manual/dieharder.tex in the dieharder sources
available at http://www.phy.duke.edu/~rgb/General/dieharder/
dieharder-3.31.1.tgz, accessed 23.10.2012.

71

https://www.geldkarte.de/_www/de/pub/geldkarte/presse/presse-informationen/pressemitteilungen/archiv/i9589_1_pm_geldkarte_kontaktlos_bayer04.php
https://www.geldkarte.de/_www/de/pub/geldkarte/presse/presse-informationen/pressemitteilungen/archiv/i9589_1_pm_geldkarte_kontaktlos_bayer04.php
https://www.geldkarte.de/_www/de/pub/geldkarte/presse/presse-informationen/pressemitteilungen/archiv/i9589_1_pm_geldkarte_kontaktlos_bayer04.php
https://www.ausweisapp.bund.de
http://www.phy.duke.edu/~rgb/General/dieharder/dieharder-3.31.1.tgz
http://www.phy.duke.edu/~rgb/General/dieharder/dieharder-3.31.1.tgz

Bibliography

[7] Robert G. Brown, Dirk Eddelbuettel, and David Bauer, Dieharder: A
Random Number Test Suite, online, available at http://www.phy.duke.
edu/~rgb/General/dieharder.php, accessed 13.10.2012.

[8] Bundesamt für Sicherheit in der Informationstechnik, Technische Richt-
linie TR-03116-2, eCard-Projekte der Bundesregierung, Teil 2 — Hoheit-
liche Ausweisdokumente, 2012.

[9] Dario Carluccio, Kerstin Lemke-Rust, Christof Paar, and Ahmad-Reza
Sadeghi, E-Passport: The Global Traceability Or How to Feel Like a UPS
Package, Information Security Applications (Jae Lee, Okyeon Yi, and
Moti Yung, eds.), Lecture Notes in Computer Science, vol. 4298, Springer
Berlin / Heidelberg, 2007, pp. 391–404.

[10] Lindsay N. Childs, Euclid’s Algorithm, A Concrete Introduction to Higher
Algebra (Sheldon J. Axler and Ken Ribet, eds.), Undergraduate Texts in
Mathematics, Springer New York, 2009, pp. 27–52.

[11] Tom Chothia and Vitaliy Smirnov, A Traceability Attack Against e-
Passports, Financial Cryptography and Data Security (Radu Sion, ed.),
Lecture Notes in Computer Science, vol. 6052, Springer Berlin / Heidel-
berg, 2010, pp. 20–34.

[12] Boris Danev, Thomas S. Heydt-Benjamin, and Srdjan Čapkun, Physical-
layer Identification of RFID Devices, USENIX Security ’09: Proceedings
of the 18th USENIX Security Symposium.

[13] Anirban DasGupta, The Birthday and Matching Problems, Fundamentals
of Probability: A First Course, Springer Texts in Statistics, Springer New
York, 2010, pp. 23–28.

[14] Bundesministerium des Innern, Neuer Personalausweis, online,
available at http://www.bmi.bund.de/DE/Themen/Sicherheit/
PaesseAusweise/ePersonalausweis/ePersonalausweis_node.html,
accessed 13.10.2012.

[15] http: // stat. fsu. edu/ pub/ diehard/ , accessed 13.10.2012.

[16] Whitfield Diffie and Martin E. Hellman, New Directions in Cryptography,
IEEE Transactions on Information Theory 22 (1976), no. 6, 644–654.

72

http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.bmi.bund.de/DE/Themen/Sicherheit/PaesseAusweise/ePersonalausweis/ePersonalausweis_node.html
http://www.bmi.bund.de/DE/Themen/Sicherheit/PaesseAusweise/ePersonalausweis/ePersonalausweis_node.html
http://stat.fsu.edu/pub/diehard/

Bibliography

[17] Yasmin El-Sharif, Niederländische NXP: Oranje sichert sich deutschen
Perso-Chip, Spiegel Online, August 2010, available at http:
//www.spiegel.de/wirtschaft/unternehmen/niederlaendische-
nxp-oranje-sichert-sich-deutschen-perso-chip-a-712655.html,
accessed 13.10.2012.

[18] Mark Fischler, Distribution of minimum distance among N random points
in d dimensions, Tech. Report FERMILAB-TM-2170, Fermi National Ac-
celerator Lab., Batavia, Illinois, May 2002.

[19] Bundesamt für Sicherheit in der Informationstechnik, Technical Guideline
TR-03110, Advanced Security Mechanisms for Machine Readable Travel
Documents, October 2010.

[20] http://globaltester.org, accessed 21.10.2012.

[21] ICAO Doc 9303, Machine Readable Travel Documents — Part 1, Machine
Readable Passports — Volume 2, Specifications for Electronically Enabled
Passports with Biometric Identification Capability, 2006.

[22] ICAO Doc 9303, Machine Readable Travel Documents — Part 3, Machine
Readable Official Travel Documents — Volume 2, Specifications for Elec-
tronically Enabled MRtds with Biometric Identification Capability, 2008.

[23] ISO/IEC FCD 14443-1 — Identification cards — Contactless integrated
circuit(s) cards — Proximity cards — Part 1: Physical characteristics,
February 2007.

[24] ISO/IEC FDIS 14443-2 — Identification cards — Contactless integrated
circuit(s) cards — Proximity cards — Part 2: Radio frequency power and
signal interface, July 2009.

[25] ISO/IEC FCD 14443-3 — Identification cards — Contactless integrated
circuit cards — Proximity cards — Part 3: Initialization and anticollision,
November 2008.

[26] ISO/IEC FCD 14443-4 — Identification cards — Contactless integrated
circuit(s) cards — Proximity cards — Part 4: Transmission protocol,
March 2007.

[27] ISO/IEC 7816-4 — Identification cards — Integrated circuit cards — Part

73

http://www.spiegel.de/wirtschaft/unternehmen/niederlaendische-nxp-oranje-sichert-sich-deutschen-perso-chip-a-712655.html
http://www.spiegel.de/wirtschaft/unternehmen/niederlaendische-nxp-oranje-sichert-sich-deutschen-perso-chip-a-712655.html
http://www.spiegel.de/wirtschaft/unternehmen/niederlaendische-nxp-oranje-sichert-sich-deutschen-perso-chip-a-712655.html

Bibliography

4: Organization, security and commands for interchange, 2005.

[28] Yifei Liu, Timo Kasper, Kerstin Lemke-Rust, and Christof Paar, E-
Passport: Cracking Basic Access Control Keys, On the Move to Mean-
ingful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS
(Robert Meersman and Zahir Tari, eds.), Lecture Notes in Computer Sci-
ence, vol. 4804, Springer Berlin / Heidelberg, 2007, pp. 1531–1547.

[29] George Marsaglia, Diehard Test Descriptions, available at http://
www.stat.fsu.edu/pub/diehard/cdrom/source/tests.txt, accessed
20.10.2012.

[30] , A Current View of Random Number Generators, Computing Sci-
ence and Statistics: Proceedings of the 16th Symposium on the Interface
(Amsterdam, Netherlands), Elsevier Science Publishers B.V., 1985, pp. 3–
10.

[31] George Marsaglia and Wai Wan Tsang, Some Difficult-to-pass Tests of
Randomness, Journal of Statistical Software 7 (2002), no. 3, 1–9.

[32] George Osipenko, Attractors, Dynamical Systems, Graphs, and Al-
gorithms, Lecture Notes in Mathematics, vol. 1889, Springer Berlin /
Heidelberg, 2007, pp. 65–83.

[33] Senthilkumar Chinnappa Gounder Periaswamy, Dale R. Thompson,
Henry P. Romero, and Jia Di, Fingerprinting Radio Frequency Identific-
ation Tags Using Timing Characteristics, Radio Frequency Identification
System Security: RFIDsec’10 Asia Workshop Proceedings, Cryptology
and Information Security, vol. 4, February 2010, pp. 73–82.

[34] http: // www. proxmark. org , online, accessed 13.10.2012.

[35] http: // code. google. com/ p/ proxmark3/ wiki/ HomePage , online,
accessed 13.10.2012.

[36] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker,
Stefan Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heck-
ert, James Dray, and San Vo, A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications, Spe-
cial Publication 800-22, available at http://csrc.nist.gov/groups/
ST/toolkit/rng/documents/SP800-22rev1a.pdf, accessed 13.10.2012,

74

http://www.stat.fsu.edu/pub/diehard/cdrom/source/tests.txt
http://www.stat.fsu.edu/pub/diehard/cdrom/source/tests.txt
http://www.proxmark.org
http://code.google.com/p/proxmark3/wiki/HomePage
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf

Bibliography

April 2010.

[37] Jens Witte, Regierungsauftrag: Infineon stellt Chips für neuen
Perso her, Spiegel Online, December 2010, available at http:
//www.spiegel.de/wirtschaft/unternehmen/regierungsauftrag-
infineon-stellt-chips-fuer-neuen-perso-her-a-733293.html,
accessed 13.10.2012.

[38] Michal Zalewski, Strange Attractors and TCP/IP Sequence Number Ana-
lysis, online, 2001, available at http://lcamtuf.coredump.cx/oldtcp/
tcpseq.html, accessed 13.10.2012.

75

http://www.spiegel.de/wirtschaft/unternehmen/regierungsauftrag-infineon-stellt-chips-fuer-neuen-perso-her-a-733293.html
http://www.spiegel.de/wirtschaft/unternehmen/regierungsauftrag-infineon-stellt-chips-fuer-neuen-perso-her-a-733293.html
http://www.spiegel.de/wirtschaft/unternehmen/regierungsauftrag-infineon-stellt-chips-fuer-neuen-perso-her-a-733293.html
http://lcamtuf.coredump.cx/oldtcp/tcpseq.html
http://lcamtuf.coredump.cx/oldtcp/tcpseq.html

Ehrenwörtliche Erklärung

Ich versichere hiermit, dass die vorliegende Masterarbeit mit dem Titel “An
Analysis of Traceability of Electronic Identification Documents” von mir selbst-
ständig, ohne Hilfe Dritter und ausschließlich unter Verwendung der angegebe-
nen Quellen angefertigt wurde. Alle Stellen, die wörtlich oder sinngemäß aus
Veröffentlichungen entnommen sind, habe ich als solche kenntlich gemacht.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form, auch in Teilen, keiner
anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht.

Declaration of Authorship

I hereby declare that I have developed and written the enclosed master’s thesis
entitled “An Analysis of Traceability of Electronic Identification Documents”
entirely on my own and have not used outside sources without declaration in
the text. Any concepts or quotations applicable to these sources are clearly
attributed to them.

This master’s thesis has not been submitted in the same or substantially similar
version, not even in part, to any other authority for grading and has not been
published elsewhere.

Ort, Datum Unterschrift
Place, Date Signature

	Title page
	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Problem Statement
	Scope of Work
	Approach

	Terms, Definitions and Protocols
	Terms and Definitions
	APDU
	CAN
	EAC
	MRZ
	PIN/PUK
	UID/PUPI

	Protocols
	ISO-14443 Card Select
	PACE
	Terminal Authentication
	Chip Authentication

	Theoretical Considerations
	Use Cases
	General Procedure
	Governmental Versus Civilian Usage
	Online Versus Offline Usage
	Hidden Readers

	Card Type Distinction
	ISO-14443 Type A/B
	Distinction via Protocol and Algorithm Support
	Chip Authentication Public Key
	Possible Attack Scenarios

	Random Numbers
	Card Selection UID/PUPI
	PACE Random Nonce
	Terminal Authentication Challenge
	Possible Attack Scenarios

	Timings
	Possible Attack Scenarios

	Conclusion of Considerations

	Implementation
	Proxmark III Architecture
	Client Usage

	Limitations of the Implementation
	General Modifications
	UID Collection
	PACE Nonce Collection
	T.A. Nonce Collection
	PACE Timings

	Analysis Methods
	Random Number Analysis
	3-dimensional Attractors
	Dieharder Random Number Test Suite

	Timing Analysis

	Analysis Results
	3-dimensional Attractors
	ISO 14443 UIDs
	PACE Nonces

	Dieharder Random Number Analysis
	ISO 14443 UIDs
	PACE Nonces

	Timing Analysis
	Map Nonce APDU timings Per Card Pair
	Perform Key Agreement APDU Timings Per Card Pair
	Overall Response Times Per Target Card

	Summary
	Summary of Analysis Results
	Future Work

	Declaration of Authorship

