
Confidentiality and Authenticity for Distributed
Version Control Systems — A Mercurial Extension

Michael Lass
Paderborn University

33098 Paderborn, Germany
michael.lass@uni-paderborn.de

Dominik Leibenger
CISPA, Saarland University

66123 Saarbrücken, Germany
dominik.leibenger@uni-saarland.de

Christoph Sorge
CISPA, Saarland University

66123 Saarbrücken, Germany
christoph.sorge@uni-saarland.de

Abstract—Version Control Systems (VCS) are a valuable tool
for software development and document management. Both
client/server and distributed (Peer-to-Peer) models exist, with the
latter (e.g., Git and Mercurial) becoming increasingly popular.
Their distributed nature introduces complications, especially
concerning security: it is hard to control the dissemination of
contents stored in distributed VCS as they rely on replication of
complete repositories to any involved user.

We overcome this issue by designing and implementing a
concept for cryptography-enforced access control which is trans-
parent to the user. Use of field-tested schemes (end-to-end encryp-
tion, digital signatures) allows for strong security, while adoption
of convergent encryption and content-defined chunking retains
storage efficiency. The concept is seamlessly integrated into
Mercurial—respecting its distributed storage concept—to ensure
practical usability and compatibility to existing deployments.

I. INTRODUCTION

Version Control Systems (VCS) have been used for a long
time now to manage different versions of files. The Source
Code Control System (SCCS) [17] came up in 1972: It al-
lows reconstruction of a single file’s full version history by
storing so-called interleaved deltas instead of replacing the
file. Changes can be tagged with metadata (usually timestamp,
author name, comment) to provide more complete information.

Over time new systems introduced additional functionality
and new concepts. The Concurrent Versions System (CVS) [9]
tracks the version history of multiple files in a central repos-
itory not necessarily located at the user’s local workstation.
It allows collaboration by coordinating changes made by
different users. Users maintain a local working copy consisting
of a single version of each file from the repository. Repository
access and synchronization of changes is performed using the
operations commit and checkout. Subversion (SVN) [3] utilizes
a delta-based storage structure for tracking version history
of entire directory trees, respecting relationships between
different files.

If repositories are shared between users, security require-
ments gain relevance. If, e.g., data is stored in a repository that
should only be accessible by some users of the system, strong
security requirements apply to the repository server. Access
control in existing centralized VCS is, if at all, realized using
trivial server-side access control lists (ACLs), totally relying
on the server’s trustworthiness and integrity. To the best of our
knowledge, the sole available work focusing on VCS security

is a cryptography-based access control solution for SVN that
enforces access rights using end-to-end encryption. [13]

Since Git [7] was released in 2005, distributed VCS have
gained more and more popularity. Mercurial [16] and Git are
the most-popular such systems today. In contrast to modern
centralized VCS, repositories are stored on users’ local work-
stations again. Collaboration among users is supported by
allowing users to synchronize their repositories with others.
Revisions can be pulled from / pushed to remote repositories.
There are no limitations concerning the resulting communica-
tion paths: Distributed VCS support centralized setups, fully
distributed peer-to-peer operation, and hybrid approaches.

The mentioned security concerns are only insufficiently
addressed by current distributed VCS: In a peer-to-peer setup,
each user has to make sure that revisions are only pushed to
other users if they are allowed to access all contained data;
communication paths are thereby restricted, as all nodes on
the paths must be sufficiently trusted. In a centralized setup,
on the other hand, all users would have to trust the central
server. Requiring such a setup would defeat the purpose of
a distributed system. Effective access control can thus only
be achieved using cryptographic measures, e.g., end-to-end
encryption, which is not supported by any distributed VCS.

We fill this gap with a cryptography-based access control so-
lution for distributed VCS based on [13], achieving confiden-
tiality and authenticity while maintaining storage efficiency:
• We work out how file-level access control can be in-

tegrated into the distributed VCS workflow as to allow
support for confidential files not intended to be accessed
by other legitimate users of the system.

• We present a concept for retrofitting differentiated read
and write access rights for files in existing, distributed
VCS without loss of storage efficiency. The concept
allows legitimate repository users to create confidential
files and to manage their access rights over time.

• We achieve authenticity of data and metadata and confi-
dentiality of file contents and file names.

• We transfer our concept into a functional extension for
Mercurial that is compatible to conventional repositories,
including code hosting platforms like Bitbucket [4].

The paper is structured as follows: Section II specifies
precise goals and presents the threat model. Section III gives
an in-depth discussion of our concept, followed by the im-



plementation of an extension for Mercurial in Section IV.
Security and performance are evaluated in Sections V and VI.
After discussing related work in Section VII, we conclude in
Section VIII.

II. GOALS AND THREAT MODEL

Our goal is to enable handling of confidential files in
distributed VCS by providing a suitable cryptography-enforced
access control mechanism. Any user of a repository shall be
able to mark newly created files as confidential, and to manage
rights for these files afterwards. We call these users file owners.
With any new revision, rights can be changed arbitrarily, but
they are immutable for a given revision. For any file x marked
confidential, we provide security guarantees with respect to
each revision r. Let uo be the user who marked x confidential
in a revision r∗. We distinguish six user categories:

1) The owner uo of the file x.
2) Users urw with read and write access to file revision r.
3) Users ur with read access to the file x in revision r.
4) Users ur′ who are not allowed to access x in revision r,

but in any other revision r′, r′ ≥ r∗ (r′ < r or r′ > r).
5) Users una with access to a repository containing revision

r, but without access rights to x in any revision.
6) Others.

Note that the information available to a user of category i is
a subset of that available to a user of category i− 1.

Our security guarantees are as follows:
• Authenticity is guaranteed both for the file name of and

access rights to x: If assigned by uo in revision r or
earlier, changes by users other than uo are detectable.

• Authenticity is guaranteed for file contents: Changes
made by users other than uo or urw can be detected.

• Confidentiality is guaranteed for file names: Users una

must not get access to file names. We require CCA-
secure encryption of file names, i.e., resistance to chosen-
ciphertext attacks.

• Confidentiality is guaranteed for file contents: We allow
users urw to choose a trade-off between confidentiality
(i.e., CCA-secure encryption) and facilitation of data
deduplication. Depending on the trade-off, users ur′ must
not learn anything about contents or may identify contents
they already know. Formally, we require CDPAd-secure
encryption (see [13]), i.e., resistance to chosen different
plaintext attacks: Ciphertexts must not leak any infor-
mation unless contents with (deduplicable) overlapping
sequences of at least d bytes have been encrypted.

Note that we do not aim to provide any guarantees that go
beyond individual files, or concerning revisions of files not
marked confidential. Further, rights are strictly tied to (and
in fact stored with) specific revisions: Users can lose rights
in future revisions, but cannot be prevented from reading (or
creating successors of) revisions they had access to before.

Moreover, we do not address compromised computer sys-
tems, although obviously an attacker who has compromised a
system shall not be able to gain more rights than the system’s

respective user. Integrity of a file owner’s computer system
is essential. As a consequence, each of the groups 2–6 listed
above are considered attackers, differing only in their rights
and information available to them. All attackers are assumed
to have full read access to their local repository and working
copy and to foreign repositories, and full write access to their
local repository and working copy. With push/pull, they can
synchronize their repository to any other.

III. GENERAL CONCEPT

We first describe the general functionality and typical use
cases of distributed VCS. Following this, we discuss how
access control can be included without loss of compatibility.

A. Prerequisites

We work out the main concepts which are shared by all
popular distributed VCS today. Figure 1 illustrates a typical
workflow: Alice commits changes in her working copy to her
local repository and pushes them to Bob’s repository. Bob
can check them out. Carol pulls Alice’s changes from Bob’s
repository, performs local changes and pushes them directly to
Alice. Usage of a central repository is possible, but optional.

commit push

pullpush

checkout

commit

checkout

push / pull

to / from optional centralrepository

Alice Bob

Carol

Fig. 1. Typical workflow in distributed VCS

Starting with an initial (empty) revision, all revisions of a
project are organized in a revision graph. Each commit yields
a revision node which is connected to its base revision, i.e., the
most-recently checked out revision the committed changes are
based on. Revisions resulting from a merge of two revisions
(with a shared ancestor) have two base revisions.

Revisions are identified by revision numbers. To ensure
uniqueness despite the system’s distributed nature (local repos-
itories might contain only parts of a revision graph), they are
computed as cryptographic hashes of their revisions’ contents,
including ancestors. A revision’s number thus also guarantees
integrity of its version history in absence of hash collisions.

To deal with large revision graphs, VCS avoid multiple
storage of identical data. Mercurial represents revisions as
deltas to previous ones to store only actual changes [16,
Chapter 4], Git deduplicates identical contents and groups
similar contents into compressed packfiles [7, Chapter 10.4].

B. Confidentiality Concept

Files marked confidential must not be accessed by unautho-
rized users. While this could be achieved by performing access
control at the interface between working copy and repository,
i.e., during commit/checkout, this would be insufficient since
these operations are executed locally and thus easy to ma-
nipulate. Effective access control could be achieved at the



interface between repositories, i.e., during push/pull, prevent-
ing transmission of files to unauthorized users’ repositories.
Unfortunately, this would impose restrictions on repository
synchronization: Confidential data could not be distributed via
unauthorized users or a central repository anymore. Further,
the VCS would have to be able to deal with incomplete
revision histories (if a user is not authorized for a revision
on a path) and incomplete revisions (missing single files).

We therefore do not limit synchronization of confidential
files at all but ensure confidentiality via encryption. To pre-
serve compatibility with other repositories and code hosting
platforms, we do not change any internal repository data
structures. Instead, we extend management of working copies.

The basic idea is to separate the working copy into two
layers: The regular working copy which is used during ex-
ecution of any VCS operations and a virtual view on top
of it. Only the virtual view contains confidential files as
they are seen by users. In that view, a user can work with
confidential files as if they were regular files. During commit,
changed files are encrypted transparently and the resulting
ciphertext and metadata for access control are added to the
regular working copy. Accordingly, metadata/ciphertexts in the
regular working copy are interpreted and decrypted during
checkout, refreshing their counterpart in the virtual view. This
way, confidentiality is achieved and both compatibility and
simple usability are preserved: If support for confidential files
is missing, encrypted contents appear in the working copy but
no further restrictions apply; if support is given, the user sees
no differences between regular files and confidential files she
is authorized for. The relation between the two layers of the
working copy is illustrated in Figure 2; the detailed mapping
is described in the following subsections.

commit

confidential files: ciphertextsregular files

confidential files: plaintexts

working copy (virtual view)

regular working copy

checkout

post checkout pre commit

Fig. 2. Working copy is separated into two layers

1) Encryption of File Contents: Each confidential file in
the virtual view is mapped to an encrypted file in the regular
working copy whose name consists of a randomly chosen iden-
tifier and a prefix identifying its owner. Its content is encrypted
with a symmetric cipher. In principle, any secure encryption
scheme could be used, although regular, randomized schemes
would cause storage overhead since they prevent the VCS from
computing space-efficient differences between file versions.

To allow for storage efficiency, we adopt the scheme from
[13]: Each file content is encrypted under a randomly chosen

key tuple (KR,KO) which is made known to authorized users.
KR is the classic encryption key chosen to be unique for a spe-
cific combination of access rights (i.e., KR is renewed when
rights change) and KO is a convergence secret, or obfuscator
supposed to be unchanged in a file’s lifetime. The scheme
first splits a content deterministically into non-overlapping,
dynamic-size chunks by using the content-defined chunking
(CDC) approach of Muthitacharoen et al. [15]: A w-bytes
sliding window is moved over the content and all positions
with a hash value within a certain range are declared chunk
boundaries. To prevent boundaries from leaking information
about the content, the used hash function is keyed by KO.
The ciphertext of a file is defined as the concatenation of its
individually encrypted chunks, each chunk being encrypted de-
terministically. This way identical plaintext chunks are mapped
to identical ciphertexts, allowing the VCS to compute deltas.
The scheme uses convergent encryption (CE) as introduced
by Farsite [8] for this purpose: A chunk is encrypted using
its hash as its key, and the key itself is encrypted with KR to
allow decryption. The convergence secret KO is included in
the hash computation to thwart known-plaintext attacks.

2) Encryption of File Names: Storage saving potential
of data deduplication mechanisms w.r.t. file names is low.
Therefore we encrypt file names with a common CCA-secure,
symmetric encryption scheme. The resulting ciphertext is
stored in a metadata file in the regular working copy. Note that
we cannot prevent different users from creating confidential
files with identical names without revealing information. Thus,
we resolve potential conflicts locally in a user’s virtual view.

3) Management of Read Access Rights: To allow read
access to a confidential file, its key has to be distributed to
authorized users. In [13], this is realized using an authen-
ticated Diffie-Hellman key exchange whose protocol steps
are realized using a sequence of commit/update operations
executed by their involved users. In a distributed system,
this approach would be impracticable, as additional push/pull
operation executions—possibly involving several intermediate
repositories—would be necessary, causing considerable com-
munication overhead. On the other hand, existing distributed
VCS already have support for OpenPGP [6] certificates:
Git has native support for signing commits using GPG [7,
Chapter 7.4] and Mercurial comes with a corresponding ex-
tension [5]. Given this support, it seems natural to utilize
OpenPGP for key distribution, too. We therefore require each
user to be in possession of an OpenPGP certificate in order
to access confidential files. A file owner can then grant rights
by encrypting the necessary keys using the authorized user’s
public OpenPGP key. Encrypted keys are stored in a metadata
file of the confidential file in the regular working copy.

To ease key distribution, only KR is explicitly distributed
this way. The corresponding obfuscator KO is encrypted with
KR and prepended to the ciphertext. This ensures that every
write-authorized user is able to change KO without requiring
changes to metadata files (which would have to be signed by
the respective file owner).



C. Authenticity Concept

In a distributed VCS, modifications of confidential files
cannot be entirely prevented as an attacker is always able
to modify her local data structures. Our goal is to prevent
undetected modifications in working copies of authorized
users. Verifying changes during push/pull would impose sim-
ilar problems as discussed for confidentiality. Additionally
this would add considerable requirements to the authenticity
verification mechanism: If unauthorized users or a central
server should be used as a proxy, they would need to be able to
verify authenticity. From a security perspective, however, it is
sufficient if authorized users are able to do so. For that reason
and with compatibility in mind, we leave push/pull unchanged.

As described in Section II, authenticity should be ensured in
several respects: File contents may be modified by authorized
users, names and other metadata only by a confidential file’s
owner. We now discuss how we achieve these goals.

1) Authentication of File Contents: Whenever a user
changes a confidential file’s content, we require her to compute
a signature on next commit to prove its authenticity. To prevent
replay attacks, the signature is computed for the combination
of content, associated metadata and base revision number.1

For being able to verify authenticity of file contents, au-
thorized users must know which other users are in possession
of write access rights, i.e., which public keys correspond to
valid signatures. The corresponding information is maintained
by the file owner and stored in the confidential file’s metadata.

2) Authentication of File Names and Metadata: Metadata
including a confidential file’s name and access rights may only
be modified by its owner. Their authenticity is ensured in a
straightforward way: Whenever data is changed, the file owner
signs the resulting data set. Again, we include the base revision
in the signature computation to prevent replay attacks.

3) Authentication of File Deletion: If any user was permit-
ted to delete a confidential file, an attacker would be able to
replace it with a non-confidential one she has access to. Unless
this is noticed by authorized users, she could gain access to
confidential information that users commit afterwards. Similar
to other metadata changes like file renaming, deletion of
confidential files must, thus, only be possible for their owners.

Deletion of confidential files requires special treatment,
though, as it involves deletion of metadata files that carry
information used for authenticity verification. We circumvent
this problem using lazy deletion: If an owner deletes a confi-
dential file, the file is tagged as deleted in its metadata file, but
not actually deleted from the regular working copy. Clients of
authorized users can verify authenticity of the deletion anal-
ogously to other metadata changes and hide the file from the
virtual view. Such semi-deleted files are completely removed
from the regular working copy during the next commit.

4) Management of Access Rights: Every user authorized to
access confidential files needs one OpenPGP certificate that is

1Precisely, the concatenation of these data’s hash values is signed. Note
that we could not use the resulting revision’s number instead of base revision
as it depends on all contents of the revision, including the signatures.

used for signing and key distribution. We describe integration
of OpenPGP into our concept in detail now.

a) Identities and Trust: First, we need to correlate VCS
users and their OpenPGP keys. Distributed VCS identify users
based on their name and email, but without any verification.
Public OpenPGP keys, on the other hand, can be identified via
an ID, an associated user ID (typically “Firstname Lastname
(Comment) <Email Address>”), or a key fingerprint. We use
the email address to match VCS users and their OpenPGP cer-
tificates. We establish trust between users based on OpenPGP’s
web of trust as follows: We require bidirectional trust between
a file’s owner and any authorized user, but no immediate
trust between pairs of users of a file as this would likely
be impractical. Instead, trust is established transitively via
the owner: All authorized users’ certificate fingerprints are
included in the access right lists signed by the file owner.
Using these fingerprints, users can fetch the corresponding
full certificates from centralized OpenPGP key servers and
rely on their authenticity due to the owner’s signature. Given
these certificates, they can verify content signatures of any
authorized user—requiring explicit trust only in the owner’s
certificate.

b) Granting and Revocation of Access Rights: For con-
fidential files with different users, a variety of metadata are
generated and stored. The representation of a confidential file
at a specific point of time is illustrated in Figure 3. Rights have
to be granted by the file owner to be valid and can change over
time. The process of granting/revocation of rights is described
below.

baseqrevision

hashqofqmetaqdata

signatureqof
write-auth.quser

KR fileqname

encryptedqwithqpublic
keysqviaqOpenPGP

encrypted
withqKR

base
revision

fileqidentifier
readqrights
writeqrights

opt.q"delete"qflag

signatureqof
fileqowner

fileqcontent

encrypted
withqKR

uniqueqidentifier

Fig. 3. Representation of confidential file in regular working copy

To grant a user a read right, the file owner essentially has
to encrypt the file’s key KR with the public OpenPGP key
of the user. Meeting the requirements from Section II requires
extra efforts, though, as users should only be granted rights for
specific file revisions. Every access right change thus requires
renewal of KR. In detail, the following steps are performed
by the file owner’s client when granting a read access right:

1) The user and her OpenPGP certificate fingerprint are
added to the list of read rights.

2) A new random key KR is created.
3) KR is encrypted using OpenPGP for each individual

read-authorized user using her OpenPGP key.
4) The file name is re-encrypted using KR.
5) The current revision is set as base revision in metadata.



6) Changed metadata is signed using uo’s OpenPGP key.
7) File content is re-encrypted2, base revision and metadata

hash are updated, and the combination is signed by uo.
Revocation of read access rights is performed analogously.
When a write right is granted, the user and her certificate

fingerprint are added to the list of write rights similar to Step 1.
As a write right only makes sense in combination with read
access, Steps 1 to 7 are executed to also grant read access if
necessary. Otherwise, only Steps 5 to 7 are executed to prove
metadata authenticity. Revocation is performed analogously.

5) Authenticity Verification: A confidential file is authentic
if all operations in its revision history are authentic. Verifying
authenticity of the whole history on each checkout would
not scale, though, as any further revision caused additional
overhead. Since revisions are immutable, it is sufficient to
perform this verification once per revision and client and store
the result at a place not synchronized between repositories (to
ensure that a client trusts only its own decisions). We perform
the following steps on checkout of a revision:

1) Check in local database (LD) whether base revision(s)
have already been verified and verify them if necessary.

2) For each new, updated or deleted confidential file:
a) If file has been removed, check whether the deleted

flag was present in its last revision’s metadata.
b) If metadata have changed:

i) Verify metadata signature. If correct, let Fo be the
used OpenPGP certificate’s fingerprint.

ii) Determine file owner. Let Ido be her identity.
iii) Verify if revision was created by Ido according to

the VCS.
iv) Verify whether OpenPGP certificate with finger-

print Fo for identity Ido is trusted.
v) Verify whether base revision and file identifier

mentioned in metadata are correct.
c) If file content has changed:

i) Verify whether content signature is correct. If so, let
Frw be the used OpenPGP certificate’s fingerprint.

ii) Let Idrw be the identity of the user that created
the revision including the change.

iii) Verify whether combination of Frw and Idrw is
present in the file’s write access rights.

iv) Verify whether base revision and metadata hash
mentioned in content metadata are correct.

3) In case of success, store verification result in LD.
Confidential files with correct metadata signatures created

using untrusted OpenPGP certificates are hidden from a user’s
virtual view, so files of owners she does not trust are invisible
to her. If other verification steps fail, it stands to reason that
the file has been tampered with, so we abort checkout then.

2The encryption scheme borrowed from [13] ensures that delta computation
on ciphertexts remains possible even if access rights (and thus KR) change. As
discussed in the source, this has a slightly negative effect on confidentiality, as
unchanged fragments (≈ 256 bytes) across revisions remain recognizable due
to deterministic encryption. Write-authorized users can change the obfuscator
at any time to hide this information; changing it for each revision results in
CCA-secure encryption. Details are covered in the source.

Three special cases have to be considered, though. First,
special handling is required if the user is owner of a confi-
dential file: If she does not trust her own certificate, malicious
modification has to be assumed, too, so we also abort checkout
in that case. Second, revisions created via merge have two base
revisions. A checkout is successful if both base revisions are
authentic and if each confidential file is the result of legitimate
changes with respect to any base revision. Third, revisions
have to be rechecked for authenticity if a user starts trusting
an owner whose files were previously hidden from her virtual
view.

D. Limitations

The authentication concept imposes a significant restriction
on merges: If confidential files are modified in different
branches that should be merged together, the merging user
has to be authorized for the change resulting from the merge,
i.e., she has to be file owner to merge metadata and needs
write access to merge modified contents. If multiple files are
involved, the restrictions might conflict, e.g., if Alice (Bob)
is only authorized to change A (B) as in Figure 4, neither of
them would be allowed to merge X/Y . This has to be resolved
manually by splitting the merge as shown in the figure.

change file A change file B

change file A

change file B merge
merge

X

Y

Fig. 4. Merge of revisions with conflicting changes in different confidential
files

IV. THE MERCURIAL EXTENSION

As part of our work, we implemented the concept proto-
typically into Mercurial, which was selected due to its easy
extensibility: Mercurial is written in Python and supports load-
ing of extension modules that can hook into its control flow,
extend existing operations and define entirely new operations.
Existing data structures, e.g., the repository, can be accessed
from extension modules in an object-oriented way.

Our extension uses several Python modules: PyCrypto [14]
provides cryptographic operations, PyYAML [19] is used for
config/metadata storage, and the wrapper python-gnupg [18]
realizes integration of the OpenPGP implementation GnuPG.
We had to modify the latter to allow consideration of user IDs
in addition to OpenPGP keys for trust relationship verification.

The Mercurial extension is available for download under
https://github.com/michaellass/hgcrypt and described below.

A. Storage Structure

Mercurial stores the user’s working copy in a regular
folder on the user’s system. A hidden subfolder .hg contains
the repository, configuration files etc. The newly introduced
confidential files, i.e., their encrypted contents and metadata,
should be under version control as if they were a regular part



of the user’s working copy. However, these files should not be
modified manually and ideally not even be seen by the user
(the virtual view should hide the regular working copy).

To achieve this, we introduce a second hidden subfolder
.hgcrypt with two subfolders in it, private and public:
public contains the data that should be included in the
repository, i.e., it is treated like a regular directory in the user’s
working copy. For each confidential file it has a subfolder,
containing its encrypted content, metadata and corresponding
signatures as shown in Figure 3. private, in contrast, is
excluded from all common operations3 (thus not included in
the repository) and contains private, only locally available
data—from now on referred to as global metadata. Here,
configuration data and security-critical information about de-
crypted confidential files, results of signature verifications, and
temporary data like pending changes in the user’s virtual view
are stored. Details about the contents are listed in Table I.

Data entry Description
fingerprint fingerprint of user’s OpenPGP certificate
id-name-mapping mapping between decrypted file names (virtual view) and

confidential file identifiers (regular working copy)
ignored-files list of all files that should be ignored by Mercurial, i.e.,

excluded from synchronization with repository (includes
.hgcrypt/private/* and decrypted confidential files
in virtual view)

hashes hashes of decrypted files used for change detection
to-be-added/
-moved/-deleted

additions, renames, deletions pending for next commit

to-be-merged files added due to merge, including base revision
new-perms pending access right changes
to-be-obfuscated pending obfuscator changes
verified list of successfully verified revisions

TABLE I
INFORMATION STORED IN GLOBAL METADATA

B. Operations
Our extension changes the configuration of Mercurial such

that global metadata and confidential plaintexts are ignored.
All other changes concern individual operations.

1) Modified Operations:
• add puts files under version control. We prevent decrypted

representations of confidential files from being added as reg-
ular files and introduce a parameter -p forcing creation of
confidential files, involving generation of a random identifier,
storage of relations between file names and identifiers in global
metadata and inclusion in the to-be-added list.
• rm removes files. We enable file owners to initiate lazy

deletion of confidential files as described in Section III-C3.
• mv allows to move or rename files. We extend it to

account for virtual view representations of confidential files:
Moves performed by file owners are included in the pending
changes (to-be-moved) and executed during next commit.
• checkout/update checks out a specific revision. We ensure

the original operation is only executed if the revision’s authen-
ticity has been successfully verified. Verification is performed

3Exclusion from all operations is an essential security aspect: If, e.g., a
checkout was allowed to write to this directory, an attacker might obtain
access to confidential files by checking in tampered files in this directory that
overwrite configuration data of a benign user’s Mercurial client.

according to Section III-C5 and results are stored for future
checkouts.
At the end of checkout, changes to confidential files are
evaluated: Decrypted files are removed from (created in) the
virtual view if confidential files are deleted (added) or the user
lost (got) read access rights. Decrypted files are updated if
their ciphertexts have changed or if a confidential file has been
moved/renamed. Global metadata are updated accordingly and
file name conflicts are resolved locally by adding suffixes.
• merge merges changes from another development branch

(revision Y ) into the revision X currently checked out. It
determines the most-recent mutual ancestor revision C of X/Y
and applies the changes from C to Y to the working copy.
If confidential files are affected, we require Y to be authen-
tic as described before. Afterwards, we execute the origi-
nal merge procedure which covers the encrypted represen-
tations of confidential files. Changed confidential files are
stored in to-be-merged, and—if possible—decrypted to
create/update virtual view representations. On next commit,
further changes to these files are detected based on the list and
encrypted representations are updated before being stored in
the repository. Note that our implementation currently requires
manual conflict resolution for merges involving conflicting
changes to the same confidential file (see Section III-D).
• commit synchronizes local changes to the repository. As

the original commit operation already covers synchronization
of confidential files provided that their encrypted represen-
tations are included in the user’s regular working copy, we
only have to ensure that changes inside the virtual view are
transferred into the regular working copy beforehand. For this,
we re-encrypt changed file contents (which we identify based
on hashes), apply changes from the pending changes lists
and update/reset all lists accordingly.
Pending changes are processed as follows: New confidential
files (to-be-added) are initially encrypted, signed and
stored under their identifiers in .hgcrypt/public. En-
crypted representations of deleted files are removed using lazy
deletion (see Section III-C3): First, residues of files already
marked deleted are removed. Second, contents of freshly
deleted files (to-be-deleted) are deleted, a deleted flag
is stored in their metadata, and the results are signed. New
names of moved files (to-be-moved) are encrypted, signed
and stored in the files’ metadata.
Changed rights are stored in the file’s metadata, too. In that
case a new random KR is assigned, implying re-encryption of
file name and content, key distribution to the new set of users,
and re-signing of the file’s content and metadata. Obfuscator
changes imply re-encryption / re-signing of file contents, too.

We also integrated appropriate handling for confidential files
into status and revert. No changes to push/pull were required.

2) Added Operations (specific to confidential files):
• setacl allows file owners to administer access rights of

their confidential files. The operation determines the PGP key
of the target user whose rights are to be changed, possibly
requiring to select one of several available keys or to enter a
fingerprint for retrieval from a key server. Granting of rights



is only possible if the combination of target user identity and
determined PGP key is trusted; revocation is allowed in any
case as long as the target user differs from the file owner.
listacl lists access rights for a file, lscf provides details about
confidential files present in a user’s virtual view and obfuscate
schedules a change of a file’s obfuscator for the next commit.

C. Limitations

Note that Mercurial provides further operations (e.g., log,
diff ) which remain usable, but require additional implemen-
tation efforts from a usability perspective, i.e., to work trans-
parently on decrypted representations of confidential files.

Another limitation applies to our use of GnuPG: Due to
lack of native support for verifying trust relationships with
respect to a combination of key and email address, we use an
operation that lists all user IDs and corresponding trust statuses
for a specific key. Unfortunately, this operation only shows the
current trust status and does not allow to determine the trust
status with respect to a specific point of time. Since existing
revisions and associated metadata are immutable, confidential
files will be rendered unusable as soon as their owners’ keys
expire or are explicitly revoked. A slight modification of
GnuPG would clearly fix that issue.

V. SECURITY EVALUATION

In this section, security is analyzed with respect to the goals
stated in Section II.

A. Confidentiality of File Names

Consider a passive attacker una who wants to break confi-
dentiality of file names. A repository contains a confidential
file’s name only in an encrypted representation as part of its
metadata, created using a CCA-secure encryption scheme with
a symmetric key KR that is in turn stored encrypted with
the public GnuPG keys of all read-authorized users. KR is
changed with every read access right change, so una cannot
gain further information about KR from other revisions. To
decrypt the file name, una would either have to break one of
the encryption schemes (which are assumed to be secure), get
a user’s private GnuPG key (which would elevate her to ur

according to our security model), or guess KR via brute force.
The latter is practically impossible as KR is sufficiently long
(256 bits in our implementation) and chosen at random by uo

whose system is assumed to be benign.
An active attacker could further try making a user uo tell

her the file name, e.g., by encrypting it with a key KR that has
previously been tampered with by the attacker. This requires
changing the files’ metadata (where KR is stored), though,
and therefore breaking authenticity of the files’ metadata.

B. Confidentiality of File Contents

Regarding confidentiality of file contents, the same argu-
ments as for file names apply. Since contents are encrypted
with the scheme from [13] instead of a CCA-secure one,
though, only CDPAd-security (d = min{w, l} − 1, where l
is the minimum chunk size that we set to the rolling hash

window size w) is achieved. As long as the obfuscator remains
unchanged across access right changes, the security guarantees
further apply only to attackers una. Users ur′ , as discussed in
[13], are in possession of the obfuscator and thus able to verify
existence of already known chunks in the encrypted file.

C. Authenticity of File Contents

Assume a file content was tampered with by a user ur and
the modified file content is present in another user’s working
copy. Section III-C5 implies that the modified file content
must have been signed with a GnuPG key with write access
according to the file’s metadata. Assuming authenticity of the
metadata, the attacker ur must either be in possession of the
private GnuPG key of a write-authorized user (elevating her
to a user urw according to our security model) to create the
signature, or she must have replayed an existing one. The
latter is possible, but only if the corresponding file content
is copied, too, and if the base revision xb of the new revision
xt matches that of the revision xs the signature was copied
from. Then, however, the attacker has only created a copy of
an existing branch of the file. As the modification leading to
xt was technically created by a user urw (who created xs from
xb) and not by ur (who created xt from xb), this is not an
attack according to Section II.

D. Authenticity of File Metadata

Assume metadata of a confidential file has been tampered
with by urw and this modification is present in the working
copy of a user u without being noticed. Provided that the
attacker urw does not know the file owner’s private GnuPG key
(which would elevate her to uo) and assuming that GnuPG’s
signature scheme is secure, the only option for urw to create
valid signatures is to create an own GnuPG key pair with the
actual owner’s user ID.

If u is the file owner, this situation could not have occurred,
though, since the client assumes a malicious modification (see
Section III-C5) if a signature is detected that has been created
using a certificate containing her user ID but a foreign key.
A non-owner u cannot detect such a malicious signature,
but the file would be hidden from her working copy unless
the combination of used GnuPG key and user ID is trusted
according to her web of trust view. Given that trust, the change
would be a valid change of uo from her point of view.

The only remaining option for urw to generate a valid
signature would be to copy it from another revision. As
signatures are computed over the whole metadata including
base revision, urw can only clone modifications actually done
by uo, which is not an attack according to our threat model.

VI. PERFORMANCE EVALUATION

A. Storage Efficiency

As we adopted the encryption scheme from [13] for storage
efficiency, we rely on our previous evaluation results and apply
convergent encryption (CE) to chunks created via content-
defined chunking (CDC) with 256 bytes avg. chunk size and
rolling hash window and min. chunk size set to 48 bytes. To



verify that the results remain valid in the Mercurial setting,
we repeated the real-repository evaluation of [13], i.e., we
re-enacted a part of the revision history of ispCP4 [1] to
measure storage overhead. We started with empty repositories
and committed changes of the original repository, ignoring
metadata like commit messages as they are out of scope
of our extension. Results are shown in Figure 5: Unsur-
prisingly, a regular repository (solid blue line) has lowest
storage consumption as Mercurial can apply data deduplication
and compression. Encrypting changed file revisions using a
regular scheme (advanced encryption standard (AES) in cipher
block chaining (CBC) mode with random initialization vectors
and static key) prevents either of them, leading to 6 times
higher costs (purple). Using our extension for user and key
management on top of that scheme incurs only little additional
overhead (red). The solid green line finally shows the savings
achieved by CDC and CE: Only half of the storage overhead
w.r.t. the unencrypted repository than with regular encryption
is caused, and costs are considerably lower than those for using
encryption without our extension.

For reference, we also plotted the corresponding evaluation
results for SVN: The dotted lines show that relations between
the different experiments are comparable to those in the SVN
evaluation, and that Mercurial is more storage-efficient than
SVN in any case thanks to its different storage concept.

B. Computational Overhead

We evaluated our implementation’s performance based on
files taken from the Linux kernel repository [2] (Table II).
Starting with tag v4.4 we chose two sets of files, each
consisting of files of similar size in the most-recent revision,
and extracted the last 100 changes made to each file. The
table shows average values over these revisions. Measurements
were performed on a single core of an Intel i5-3210M with
data located in memory. We used a Rabin-fingerprint-based
CE implementation (see [13]).

Set Path Size (KiB) Lines of code

arch/ia64/kernel/acpi.c 24.8 1017
drivers/pcmcia/pcmcia resource.c 25.5 994
kernel/time/tick-broadcast.c 19.0 751

1 lib/swiotlb.c 25.5 925
net/core/net namespace.c 14.4 636
net/mac80211/agg-tx.c 22.9 796
sound/pci/hda/patch conexant.c 99.7 3390

drivers/gpu/drm/i915/intel display.c 432 15698
drivers/net/ethernet/broadcom/bnx2x/bnx2x link.c 392 13474
drivers/net/ethernet/broadcom/bnx2x/bnx2x main.c 395 14589

2 drivers/net/ethernet/broadcom/tg3.c 461 18102
drivers/net/wireless/ipw2x00/ipw2200.c 326 12121
drivers/scsi/lpfc/lpfc sli.c 502 16434
net/wireless/nl80211.c 333 12666

TABLE II
FILE SETS USED FOR PERFORMANCE EVALUATION

4The data set is rather varied: On average, each revision affects ≈ 25 files,
each of which has ≈ 2.8 clusters containing changed content. StDev of files
affected per revision is ≈ 131 and StDev of changed clusters per file is ≈ 4.7.

1) Commit: For each file set, we committed 100 changes
to a Mercurial repository and measured the total execution
time. Measurements were repeated 50 times each for three
different scenarios: A conventional repository, a repository
with our extension enabled but using non-confidential files,
and a repository in which all files are marked confidential.

Results are shown in Table III. By comparing them with
times required for committing only a single file from a set, we
dissected the time for committing a single revision into a static
part and a part per confidential file: Loading the extension
adds about 50ms to each commit. Additional time for each
confidential file depends on its size, but with 150ms for
relatively large source files it can be rated barely noticeable.

2) Checkout: For an initial checkout we evaluated the time
required to verify all 100 previously committed revisions (see
Section III-C5) containing confidential files. As this verifica-
tion only takes place if confidential files have been changed,
only the scenario where each file is marked as confidential was
considered. Again, measurements were repeated 50 times.

Results are shown in Table IV. Again we dissected the
measured time into a static and a per-file portion. Verification
of a single revision takes about 1ms with additional 23ms
for each confidential file; file sizes have negligible impact.
Verification time can therefore be assessed as only noticeable
during an initial checkout involving many revisions.

100 revisions Single revision
Set Time (s) StDev (s) Static (ms) Per File (ms)

Unmodified Mercurial 8.30 0.074 61.4 3.1
1 Extension loaded 13.56 0.099 113.0 3.2

Commited as confidential 51.92 0.422 114.5 57.8

Unmodified Mercurial 14.13 0.125 63.1 11.2
2 Extension loaded 19.29 0.134 115.8 11.0

Commited as confidential 116.28 0.954 116.7 149.4

TABLE III
TIME REQUIRED FOR COMMIT

100 revisions Single revision
Time (s) StDev (s) Static (ms) Per File (ms)

Set 1 16.16 0.168 0.7 23.0
Set 2 16.51 0.162 1.2 23.4

TABLE IV
TIME REQUIRED FOR VERIFICATION

VII. RELATED WORK

Except for the SVN extension [13] on which our work is
based, we are not aware of any further research in the special
field of VCS security. Challenges and solutions similar to ours
can be found in the related field of secure file systems, though:

SiRiUS [11] and Plutus [12] are examples of file systems
that support file-level access rights that are enforced via
encryption. Similar to our solution, SiRiUS encrypts each file
symmetrically using a randomly chosen key and distributes it
to authorised users by encrypting it using their public keys.
Plutus further deals with efficient key distribution in presence

















   




























Fig. 5. Storage costs of Mercurial extension in comparison to [13]

of many users and frequent right changes: Files with identical
rights are grouped into filegroups and their keys are collected
in a corresponding lockbox so that distribution of a single
filegroup key is sufficient to grant access to multiple files. Key
rotation (later replaced by key regression [10]) ensures that a
file key allows access to all prior versions. Lazy revocation
eliminates the need for immediate re-encryption of files after
right changes: When keys have to be changed, re-encryption
is postponed until the next write access—similar to our lazy
deletion concept. Since semantics of rights are different in our
solution (rights are bound to revisions and should not imply
access to previous revisions), we employ the SiRiUS approach.

Convergent encryption, the essential component for our
solution’s storage efficiency guarantees, was initially intro-
duced by Douceur et al. [8] as part of Farsite. Its goal is
to allow deduplication of identical files of different users
despite encryption. Storer et al. [20] were the first to apply
CE to chunks produced by CDC as to allow deduplication for
similar files. Tahoe-LAFS [21] uses CE at the file level like
Farsite, but introduces a convergence secret as to improve its
security guarantees at the cost of slightly worse deduplication
efficiency. We adopted the combination of both extensions
proposed and proven secure in [13], i.e., we use a convergence
secret to improve security, but perform CDC beforehand.

All works have in common that they propose an isolated,
new system, while we aim at enabling an easy transition from
an insecure, established system to one with strong security.

VIII. CONCLUSION

We have presented a concept for secure and efficient storage
of confidential files in distributed VCS. It allows legitimate
users of a repository to manage read/write rights for indi-
vidual files, which are effectively enforced using field-tested
cryptographic measures: Read access control is achieved by
symmetric encryption of file contents and names; integration
of signatures allows users to verify authenticity of file contents
and metadata with respect to write access rights. In contrast
to the use of standalone encryption tools, however, access
control is seamlessly integrated into the VCS and its use
is transparent to the user: Once the system is set up, users
take advantage of strong security properties without having
to think about (or even noticing) that cryptography is in
place, except for a slight performance degradation. Storage

overhead is minimized by a specialized encryption scheme
based on chunking and convergent encryption, which allows
delta computation on ciphertexts as required by the VCS. The
concept has been proven secure and has been implemented
for Mercurial in a way that it is compatible with unmodified
Mercurial versions and code hosting platforms.

REFERENCES

[1] http://www.isp-control.net:800/ispcp svn/trunk.
[2] http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/.
[3] Apache Software Foundation, “Apache Subversion,” http://subversion.a

pache.org/, 2015, accessed 2016-01-06.
[4] Atlassian, Inc., “Bitbucket — The Git solution for professional teams,”

https://bitbucket.org/, 2016, accessed 2016-01-25.
[5] B. Benissot, “GPG extension,” https://www.mercurial-scm.org/wik

i/GpgExtension, 2016, accessed 2016-01-06.
[6] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer,

“OpenPGP Message Format,” RFC 4880 (Proposed Standard), Internet
Engineering Task Force, Nov. 2007, updated by RFC 5581.

[7] S. Chacon and B. Straub, Pro Git, online ed. New York: Apress, 2009,
http://git-scm.com/book, accessed 2016-01-06.

[8] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed file
system,” Microsoft Research, Technical Report MSR-TR-2002-30, 2002.

[9] Free Software Foundation, “CVS – Concurrent Versions System,” http:
//www.nongnu.org/cvs/, 2006, accessed 2016-01-06.

[10] K. Fu, S. Kamara, and T. Kohno, “Key regression: Enabling efficient
key distribution for secure distributed storage,” in Proc. of NDSS, 2006.

[11] E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius: Securing
remote untrusted storage,” in Proceedings of NDSS, 2003.

[12] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus:
Scalable secure file sharing on untrusted storage,” in Proceedings of
FAST, 2003, pp. 29–42.

[13] D. Leibenger and C. Sorge, “A Storage-Efficient Cryptography-Based
Access Control Solution for Subversion,” in Proc. of SACMAT, 2013,
pp. 201–212.

[14] D. Litzenberger, “PyCrypto - The Python Cryptography Toolkit,” https:
//www.dlitz.net/software/pycrypto/, 2015, accessed 2016-01-06.

[15] A. Muthitacharoen, B. Chen, and D. Mazières, “A low-bandwidth
network file system,” in Proc. of SOSP. ACM, 2001, pp. 174–187.

[16] B. O’Sullivan, Mercurial: the definitive guide, online ed. Sebastopol,
CA: O’Reilly Media, Inc., 2009, http://hgbook.red-bean.com/read/.

[17] M. Rochkind, “The source code control system,” IEEE Transactions on
Software Engineering, vol. SE-1, no. 4, pp. 364–370, Dec 1975.

[18] V. Sajip, “python-gnupg,” https://bitbucket.org/vinay.sajip/python-gn
upg/, 2015, accessed 2016-01-06.

[19] K. Simonov, “PyYAML,” http://pyyaml.org/wiki/PyYAML, 2014, ac-
cessed 2016-01-06.

[20] M. W. Storer, K. Greenan, D. D. E. Long, and E. L. Miller, “Secure
Data Deduplication,” in Proc. of StorageSS ’08. ACM, 2008, pp. 1–10.

[21] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: the least-authority filesys-
tem,” in Proceedings of StorageSS ’08. ACM, 2008, pp. 21–26.


