

Assignment for the lecture Functional Analysis Winter term 2022/23

Sheet 2

Due on Mon 14.11.2022, hand in before the lecture.

Exercise 1 (10 Points). Let \mathcal{H} be a Hilbert space and $A \subseteq \mathcal{H}$ be an arbitrary subset. Prove the following assertions:

- a) A^{\perp} is a closed linear subspace of \mathcal{H} .
- b) $(A^{\perp})^{\perp} = \overline{\text{span A}}$, the closure of the span of A.

Exercise 2 (10 Points). Consider the Hilbert space $L^2(-1,1)$ endowed with the inner product

$$\langle f,g\rangle := \int_{-1}^{1} f(t)\overline{g(t)} \mathrm{d}t.$$

Apply the Gram-Schmidt Orthogonalization Procedure to the sequence of functions $\{f_n\}_{n=0}^{\infty}$ given by

 $f_n: [-1,1] \to \mathbb{C}, \quad t \mapsto t^n$

and show that the resulting ONB $(e_n)_{n=0}^{\infty}$ is of the form

$$e_n(t) = \frac{1}{\sqrt{2}}(2n+1)^{\frac{1}{2}}P_n(t)$$

where

$$P_n(t) = \frac{1}{2^n n!} \frac{d^n}{dt^n} (t^2 - 1)^n,$$

is the n-th Legendre Polynomial.

* If you are not familiar with $L^2(-1,1)$, you may consider the pre-Hilbert space C[-1,1] with the same inner product instead.

Exercise 3 (10 Points). Consider the Hilbert space (l_2, \langle, \rangle) of complex square-summable sequences given by

$$l_2 := \left\{ (a_n)_{n=1}^{\infty} \colon a_n \in \mathbb{C}, \sum_{n=1}^{\infty} |a_n| < \infty \right\}, \quad \langle (a_n)_{n=1}^{\infty}, (b_n)_{n=1}^{\infty} \rangle := \sum_{n=1}^{\infty} a_n \overline{b_n}.$$

For which $\lambda \in \mathbb{C}$ is

$$L: l_2 \to \mathbb{C}, \quad L((a_n)_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \lambda^n a_n$$

well defined? Show that L defines a bounded (i.e., continuous) linear functional for these λ and compute its norm.

Exercise 4 (10 Points). Let \mathcal{H} be a Hilbert space, $(x_n)_{n=1}^{\infty}$ a sequence of elements of \mathcal{H} and $x \in \mathcal{H}$.

• We say $(x_n)_{n=1}^{\infty}$ converges (in norm) to x if

$$||x_n - x|| \to 0 \text{ for } n \to \infty.$$

• We say $(x_n)_{n=1}^{\infty}$ converges weakly to x, if for any $y \in \mathcal{H}$ we have

$$\langle x_n, y \rangle \to \langle x, y \rangle$$
 for $n \to \infty$.

Show the following.

- a) If $(x_n)_{n=1}^{\infty}$ converges in norm to x then it also converges weakly to x. (Norm convergence implies weak convergence)
- b) If $(x_n)_{n=1}^{\infty}$ converges weakly to x and weakly to x', then x = x'. (Uniqueness of weak limits)
- c) Let (e_n)[∞]_{n=1} be an orthonormal system in *H*. Then (e_n)[∞]_{n=1} converges weakly to zero but not in norm.
 (Weak convergence does not imply norm convergence)