

## Assignment for the lecture Functional Analysis Winter term 2022/23

## Sheet 4

Due on Mon 28.11.2022, hand in before the lecture.

**Exercise 1** (10 Points). Let  $f(z) = \sum_{n=0}^{\infty} a_n z^n$   $(a_n \in \mathbb{C})$  be a power series with radius of convergence  $0 < R \leq \infty$ .

- a) Let  $\mathcal{H}$  be a Hilbert space and  $A \in B(\mathcal{H})$  such that ||A|| < R. Show that there is a well defined operator  $f(A) \in B(\mathcal{H})$ .
- b) Now consider  $f(z) = e^z$ . Show that  $e^{iA}$  is unitary if A is self-adjoint.
- **Exercise 2** (10 Points). a) Let  $\mathcal{H}$  be a finite-dimensional Hilbert space. Show that the image ran(A) of any operator  $A \in B(\mathcal{H})$  is a closed set.
  - b) Construct an example of a bounded operator  $A \in B(\mathcal{H})$  on a Hilbert space  $\mathcal{H}$ , such that ran(A) is not closed.

**Exercise 3** (20 Points). Let  $1 \le p \le \infty$  and consider the Banach spaces

$$l_p := \{ (a_n)_{n=1}^{\infty} \mid a_n \in \mathbb{C}, \| (a_n)_{n=1}^{\infty} \|_p < \infty \},\$$

where

$$\|(a_n)_{n=1}^{\infty}\|_p := \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{\frac{1}{p}} \quad (1 \le p < \infty) \quad \text{and} \quad \|(a_n)_{n=1}^{\infty}\|_{\infty} := \sup_{n \in \mathbb{N}} |a_n|.$$

a) Let  $1 and <math>1 < q < \infty$  such that  $\frac{1}{q} + \frac{1}{p} = 1$ . Show that the dual space of  $l_p$  is isometrically isomorphic to  $l_q$ .

*Hint.* Use Hölders inequality  $||(a_n b_n)_{n=1}^{\infty})||_1 \le ||(a_n)_{n=1}^{\infty}||_q \cdot ||(b_n)_{n=1}^{\infty}||_p$ .

- b) Let  $1 \le p < q \le \infty$ . Show that  $l_p \subseteq l_q$ ,  $l_p \ne l_q$  and  $||(a_n)_{n=1}^{\infty}||_q \le ||(a_n)_{n=1}^{\infty}||_p$ .
- c) Let  $1 \le p < \infty$  and  $(a_n)_{n=1}^{\infty} \in l_p$  (and thus also in all  $l_q$  with  $q \ge p$ ). Show that

$$\lim_{q \to \infty} \|(a_n)_{n=1}^{\infty}\|_q = \|(a_n)_{n=1}^{\infty}\|_{\infty}$$

d) We can define  $l_p$  as above also for 0 . Why is this not a normed space?