Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Übungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 6

Abgabe: Montag, 4. 1. 2021, 14:00 Uhr per E-Mail oder Teams-Nachricht an Ihre Tutorin bzw. Ihren Tutor

Aufgabe 1 ((3 × 2) + (3 × 3) + (2 × 1) Punkte): Von einer Funktion $f : [0, \infty) \to \mathbb{R}, x \mapsto y = f(x)$ sind die folgenden Wertepaare $(x_j, y_j), j = 0, 1, 2$, bekannt:

$$\begin{array}{c|cccc} j & 0 & 1 & 2 \\ \hline x_j & 0 & 1 & 4 \\ y_j & 0 & 1 & 2 \\ \end{array}$$

- (a) Es bezeichne p_2 das eindeutige Interpolationspolynom vom Grad ≤ 2 mit den Stützstellen x_j und den Werten y_j für j=0,1,2.
 - (i) Bestimmen Sie p_2 mittels der Lagrangeschen Darstellung.
 - (ii) Bestimmen Sie p_2 mittels der Newtonschen Darstellung.
 - (iii) Berechnen Sie die Werte $p_2(2)$ und $p_2(3)$ mithilfe des Algorithmus von Neville.
- (b) Wir fügen der Wertetabelle den Punkt $(x_3, y_3) = (9, 3)$ hinzu. Es bezeichne p_3 das eindeutige Interpolationspolynom vom Grad ≤ 3 mit den Stützstellen x_j und den Werten y_j für j = 0, 1, 2, 3.
 - (i) Bestimmen Sie p_3 mittels der Lagrangeschen Darstellung.
 - (ii) Bestimmen Sie p_3 mittels der Newtonschen Darstellung.
 - (iii) Berechnen Sie die Werte $p_3(2)$ und $p_3(3)$ mithilfe des Algorithmus von Neville.
- (c) Tatsächlich ist die Funktion f gegeben durch $f(x) = \sqrt{x}$ für alle $x \in [0, \infty)$. Vergleichen Sie
 - (i) die Werte $p_2(2)$ und $p_3(2)$ mit dem exakten Wert $f(2) = \sqrt{2}$ und
 - (ii) die Werte $p_2(3)$ und $p_3(3)$ mit dem exakten Wert $f(3) = \sqrt{3}$.

Aufgabe 2 (2 + 4 + 3) Punkte: In dieser Aufgabe wollen wir zeigen, dass

$$\lim_{n \to \infty} \sqrt[n]{n} = 1. \tag{1}$$

Hierzu betrachten wir die durch $a_n := \sqrt[n]{n} - 1$ für alle $n \in \mathbb{N}$ definierte Folge $(a_n)_{n \in \mathbb{N}}$.

bitte wenden

- (a) Zeigen Sie, dass $a_n \geq 0$ für alle $n \in \mathbb{N}$.
- (b) Verifizieren Sie mithilfe des binomischen Lehrsatzes, dass

$$n = (1 + a_n)^n \ge 1 + \binom{n}{2} a_n^2$$
 für alle $n \in \mathbb{N}$ mit $n \ge 2$

gilt, und folgern Sie, dass $a_n \leq \sqrt{\frac{2}{n}}$ für alle $n \in \mathbb{N}$ mit $n \geq 2$.

(c) Beweisen Sie unter Verwendung der Ergebnisse aus den Aufgabenteilen (a) und (b), dass $(a_n)_{n\in\mathbb{N}}$ gegen 0 konvergiert, und folgern Sie daraus (1).

Aufgabe 3 (5 + 2 Punkte): Es sei $(x_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen, die gegen $x\in\mathbb{R}$ konvergiert.

- (a) Zeigen Sie: Erfüllt die Folge $(x_n)_{n\in\mathbb{N}}$ die Bedingung, dass $x_n \geq 0$ für alle $n \in \mathbb{N}$, dann gilt $x \geq 0$.
- (b) Gilt (a) auch für strikte Ungleichungen, d. h. folgt aus $x_n > 0$ für alle $n \in \mathbb{N}$, dass x > 0 sein muss? Geben Sie einen Beweis oder ein Gegenbeispiel.

Aufgabe 4 (2 + 2 + 3 Punkte): Wir betrachten die Folgen $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$, die gegeben sind durch

$$a_n := \frac{6n^3 + 4n + 1}{3n(2n+1)^2}, \qquad b_n := \frac{1 + (-1)^n n(n+1)}{2n^2} \quad \text{und} \quad c_n := n\left(\sqrt{1 + \frac{1}{n}} - 1\right).$$

Welche dieser Folgen sind konvergent? Bestimmen Sie gegebenenfalls ihren Grenzwert.

Hinweis: Zur Untersuchung der Folge $(c_n)_{n\in\mathbb{N}}$ ist die Identität $(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y}) = x - y$ nützlich, die für alle $x, y \in \mathbb{R}$ mit x, y > 0 gilt.

Wir wünschen Ihnen frohe Weihnachten und einen guten Rutsch ins Jahr 2021!