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Chapter I.

Introduction

This course on mathematical aspects of quantum mechanics centers around the
canoncial commutator relations. In one degree of freedom for the momentum
operator p and the position operator q, those read

pq − qp = [p, q] = −iℏ1.

For several degrees of freedom and operators pi and qj the canonical commuta-
tion relations read [pi, qj] = −iℏδij. In the following, especially the case where
we have an infinite family of operators will be of central interest.

In the usual setting of quantum mechanics, observables, that is experimen-
tally measurable quantities, correspond to selfadjoint operators on a Hilbert
space. Unfortunately it turns out that there is no realisation of the canon-
ical commutation relations by bounded operators. Thus there is a need for
the introduction of unbounded operators, especially of selfadjoint unbounded
operators.

An unbounded operator A on an Hilbert space H is a linear operator that is
defined on some subset D(A) ⊆ H, usually D(A) is dense in H, and which has
no finite operator norm. As opposed to bounded operators, where the property
“hermitian” (or “symmetric”) is equivalent to the property “selfadjoint”, this is
not true for unbounded operators.1 For an unbounded operator, the natural
analogon “For all x, y ∈ D(A) it holds ⟨Ax, y⟩ = ⟨x,Ay⟩” is a weaker condition
than “A = A∗”, which also includes D(A) = D(A∗).

The hermitian property is easily checked, most formal operators in physics
are of this form. Sadly, mathematically speaking, not much can be said about
unbounded operators that are merely hermitian. The selfadjointness of an
unbounded operator is hard to check, but there are strong mathematical results
for those operators (e.g. the Spectral Theorem and the Theorem of Stone).

1Recall that a bounded operator A : H → H is called hermitian, if for all x, y ∈ H it holds
⟨Ax, y⟩ = ⟨x, Ay⟩.

7



Chapter I. Introduction

The Spectral Theorem for unbounded operators is some kind of continuous
analogon of the Spectral Theorem known from linear algebra, which states
that symmetrical matrices can be diagonalised. More precisely, an unbounded
operator A can be written in the form

A =
ˆ
λ dE(λ),

where λ are the elements of the spectrum of A that have a certain meaning in
the correspondence between observables and selfadjoint operators. The λ are
the possible values of the observable A in measurement.

The Theorem of Stone characterises unitary semigroups. Given a family of
unitary operators (U(t))t∈I such that it holds U(t)U(s) = U(t+ s) and some
sort of continuity on this family, the Theorem of Stone states that the members
of the family are of the form U(t) = eitH , where H is selfadjoint and the nature
of the operator H depends on the “strength” of the continuity. In physics, this
operator is usually the Hamilton operator. Given the Hamilton operator of
some system, we can pass to the semigroup generated by H and interpret it as
the Schrödinger picture ψt = U(t)ψ. Taking the derivative of U(t) gives us the
Schrödinger equation:

d

dt
U(t) = iHU(t).

A central question for this lecture will be: Given a symmetric operator,
can we extend it to a selfadjoint operator? This extension corresponds to
prescribing boundary conditions. Usually, such an extension (if it even exists) is
not unique. There is a general theory due to von Neumann of “defect indices”,
which characterise possible selfadjoint extensions.

In the second part of the lecture, we ask for realisations of the canonical
commutation relations for finitely many degrees of freedom. Instead of treating
the problem

pq − qp = −iℏ1,
which due to the nature of the operators p and q inherently enforces dealing
with cumbersome technical details like the possibly different domains of p and q,
we pass, using the Theorem of Stone, over to operators U(t) = eitp, V (t) = eisq

such that
U(t)V (s) = eitsV (s)U(t).

Those relations are called the Weyl relations. The Uniqueness Theorem of von
Neumann states that each representation of the Weyl relations is equivalent to
a direct sum of the Schrödinger representation of the canonical commutation
relations.
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In the third part of the lecture, we will concern ourselves with infinitely
many degrees of freedom which leads us straight into quantum field theory.
In this framework, different physical theories correspond to non-equivalent
representations of the canonical commutation relations.

Because the sensible choice of representation depends on the physical frame-
work, it is not really the operators themselves which are important, but the
algebraic relations between them. We thus consider a universal C∗-algebra gen-
erated by the canonical commutation relations. This C∗-algebra then encodes
the algebraic properties of the canonical commutation relations. A concrete
physical situation corresponds to a state on this C∗-algebra and by a Gelfand-
Neumark-Segal type construction we obtain a realisation on a concrete Hilbert
space.
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Chapter II.

Prerequisites

1. Hilbert Spaces
Definition II.1 (Hilbert Space): Let H be a complex vector space, i.e. an
abelian group (H,+) together with a scalar multiplication · : C × H → H
such that for all x, y ∈ H and λ, µ ∈ C it holds 1x = x, (λ + µ)x = λx + µx,
λ(µx) = (λµx). If there is a map ⟨·, ·⟩ : H × H → C which satisfies for all
x, y, z ∈ H and λ ∈ C that

(i) ⟨x, y + z⟩ = ⟨x, y⟩ + ⟨x, z⟩,
(ii) ⟨x, λy⟩ = λ⟨x, y⟩,
(iii) ⟨x, y⟩ = ⟨y, x⟩∗,
(iv) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0,

and if H is complete1 with repect to the norm ∥x∥ := ⟨x, x⟩1/2, then H is called
a Hilbert space.

Example II.2: (i) The vector space H = Cn turns into a Hilbert space with
the inner product

⟨x, y⟩ =
n∑
j=1

(xj)∗yj,

where x = (x1, . . . , xn)t and y = (y1, . . . , yn)t.
(ii) The vector space H = ℓ2 = {(xn)n∈N ∈ CN | ∑∞

n=1|xn|2 < ∞} turns into
a Hilbert space with the inner product

⟨(xn)n∈N, (yn)n∈N⟩ :=
∞∑
n=1

(xn)∗yn.

1Recall that a metric space is called complete, if every Cauchy sequence in said metric
space convergences therein.
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Chapter II. Prerequisites

(iii) Given a σ-algebra F on R and a measure µ on F, then H = L2(R,F, µ)
is a complex vector space with the pointwise operations. A vector x is just a
square integrable function f on R, i.e. f is measurable with respect to µ such
that

´
|f(t)|2 dµ(t) < ∞. It turns into a Hilbert space together with the inner

product declared via
⟨f, g⟩ :=

ˆ
f(t)∗g(t) dµ(t) .

Theorem II.3 (Cauchy-Schwarz Inequality): Let H be a Hilbert space. Then
for all x, y ∈ H we have the estimate

|⟨x, y⟩| ≤ ∥x∥∥y∥.

In the above estimate it holds equality if and only if {x, y} linearly dependent.

Notation II.4: Let M be a closed linear subspace of H (i.e. M is itself a
Hilbert space). Then

M⊥ := {x ∈ H | For all y ∈ M it holds ⟨x, y⟩ = 0}

is called the orthogonal complement of M . Any element x of H can be uniquely
decomposed in a sum x = z +w, where z belongs to M and w belongs to M⊥.

Theorem II.5: Let H be a Hilbert space and let M be a sub-Hilbert space. Then
any x ∈ H can be uniquely written as x = z + w with z ∈ M and w ∈ M⊥.
We then write H = M ⊕ M⊥.

Notation II.6: Let H be a Hilbert space. We denote by

H′ = {ξ : H → C | ξ is linear and continuous}

the topological dual space of H.

Theorem II.7 (Riesz Representation Theorem): Let H be a Hilbert space. For
each ξ ∈ H′ there is a unique vector y ∈ H such that for all x ∈ H it holds
ξ(x) = ⟨y, x⟩.

Denote Θ: H → H′, x 7→ Θx, where Θx : H → C, y 7→ ⟨x, y⟩. The Riesz
Representation Theorem tells us that H is canonically isomorphic to its topo-
logical dual space via Θ, when the topological dual space is equipped with the
dual inner product ⟨ξ, η⟩∗ := ⟨Θ−1η,Θ−1ξ⟩.
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2. Bounded Operators on Hilbert Spaces

Proof: Let ξ ∈ H′ − {0} be given. Denote by N := ker ξ = {z ∈ H | ξ(z) = 0}.
Then codim N = dim N ⊥ = 1. Taking any x0 ∈ N ⊥ − {0} and normalising it
allows to declare the vector y for which it holds ξ = Θy, namely

y = ξ(x0)∗

∥x0∥2 x0.
□

Remark II.8: The Riesz Representation Theorem justifies Dirac’s bra-ket no-
tation in physics. A vector x ∈ H is written |x⟩ and called a ket. A functional
ξ ∈ H′ is written ⟨y|, where y = Θ−1ξ, and called a bra. Now the action of ξ
on x is just ⟨y|x⟩.

Definition II.9: Let H be a Hilbert space. If H has a countable dense subset,
then H is called separable.

In this lecture we will only deal with separable Hilbert spaces. Most natural
Hilbert spaces are separable, thus this is no real restriction for our purposes.

Theorem II.10: Each separable Hilbert space H has an orthonormal basis, i.e.
there is a family (xi)i∈I with an index set I which is at most countable such
that for all i, j ∈ I it holds ⟨xi, xj⟩ = δij and such that for all x ∈ H it holds

x =
∑
i∈I

⟨x, xi⟩xi.

For any x ∈ H it holds ∥x∥2 = ∑
i∈I |⟨xi, x⟩|2, the so-called Identity of Parseval,

which can be understood as a generalisation of Pythagoras Theorem.

Such an orthonormal basis can be produced by the Gram-Schmidt process.
Orthonormal bases are not unique, but their cardinality is. The cardinality
N of an orthonormal basis of H is called its Hilbert space dimension, in signs
dim H = N .

Theorem II.11: Hilbert spaces with the same dimension are isomorphic, i.e.
each separable Hilbert space H is either isomorphic to Cn, if dim H = n < ∞,
or ℓ2, if dim H = ∞.

2. Bounded Operators on Hilbert Spaces
In the following, let H always be a separable Hilbert space.
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Definition II.12: Let T : H → H be a function. If T is linear, i.e. if for all
x, y ∈ H and λ ∈ C it holds

T (x+ y) = T (x) + T (y), T (λx) = λT (x),

then T is called a linear operator, or briefly an operator.

Remark II.13: In finite dimensions (i.e. if dim H < ∞), any linear operator
T : H → H is automatically continuous. This is false for infinite-dimensional
Hilbert spaces.

Lemma II.14: For a linear operator T : H → H, the following statements are
equivalent:

(i) T is continuous,
(ii) T is continuous in zero,
(iii) There is a positive real number C such that

∥T∥ := sup{∥Tx∥ : x ∈ H, ∥x∥ = 1} < C.

In this case, T is called bounded.2 The number ∥T∥ is then the smallest
constant such that for all x ∈ H it holds ∥Tx∥ ≤ ∥T∥∥x∥.

Proof: The implication “(i) ⇒ (ii)” is tautological.
For “(ii) ⇒ (iii)” let T be continuous in zero. For δ = 1 there is ε > 0 such

that whenever ∥y∥ ≤ ε, then ∥Ty∥ ≤ δ = 1. Let now x be an element of H
with ∥x∥ = 1. Then y := εx has norm ∥y∥ = ε and thus ∥Ty∥ = ∥T (εx)∥ =
ε∥Tx∥ ≤ 1. Hence ∥Tx∥ ≤ 1/ε for all x ∈ H with ∥x∥ = 1.

For “(iii) ⇒ (i)” let (xn)n∈N be a sequence in H that converges to x ∈ H, i.e.
∥xn − x∥ → 0. Then

∥Txn − Tx∥ = ∥T (xn − x)∥ ≤ ∥T∥∥xn − x∥ → 0,

hence (Txn)n∈N converges to Tx which shows that T is sequentially continu-
ous. □

Notation II.15: We call ∥T∥ the operator norm of T and put

B(H) := {T : H → H | T is linear and bounded}.
2Note that T is not really bounded in the sense that its image is bounded, but T is bounded

on bounded sets. This naming convention survived due to historical reasons.

14



2. Bounded Operators on Hilbert Spaces

Theorem II.16: The set of bounded operators on H is a Banach algebra, i.e.
as a vector space (with the pointwise operations) it is complete with respect to
the operator norm and for all T, S ∈ B(H) it holds

∥T + S∥ ≤ ∥T∥ + ∥S∥, ∥TS∥ ≤ ∥T∥ + ∥S∥.

Remark II.17: For dim H = n < ∞, the bounded operators B(H) can (via
choice of an orthonormal basis) be identified with Mn(C), the algebra of complex
n× n-matrices.

If dim H = ∞, then the bounded operators B(H) can be identified with a
subset of formal infinite arrays of complex numbers, but this is not useful; in
particular, for an operator T : H → H that corresponds to the array (tij)i,j∈N,
there is no useful criterion in terms of the tij to decide whether ∥T∥ < ∞.

Theorem II.18: Let T be a bounded operator on H. Then there is one and only
one bounded operator T ∗ on H such that for all x, y ∈ H it holds

⟨x, Ty⟩ = ⟨T ∗x, y⟩.

Proof: Let x be an element of H. How do we define T ∗x? Consider the linear
map

ξ : H −→ C, y 7−→ ⟨x, Ty⟩.

This map ξ is continuous; to see this let (yn)n∈N be a sequence in H such that
yn → y, i.e. ∥yn − y∥ → 0. Then

|ξ(yn) − ξ(y)| = |ξ(yn − y)| = |⟨x, T (yn − y)⟩| ≤ ∥T∥∥x∥∥yn − y∥ → 0,

thus ξ is sequentially continuous and hence ξ ∈ H′. Due to the Riesz Repre-
sentation Theorem we know that there is one and only one element z of H
such that ⟨z, y⟩ = ξ(y) = ⟨x, Ty⟩ for all y ∈ H, hence we put T ∗x := z. Now it
remains to show that the assignment x 7→ T ∗x is linear and that T ∗ is indeed
bounded. □

Example II.19: In the finite-dimensional setting, passing from T to T ∗ corre-
sponds to taking the hermitian transpose of the transformation matrix of T
with respect to an orthonormal basis of the Hilbert space.

Theorem II.20: For all T ∈ B(H) the following hold:

(i) (T ∗)∗ = T ,
(ii) ∥T ∗∥ = T ,

15



Chapter II. Prerequisites

(iii) ∥TT ∗∥ = ∥T∥2

Definition II.21: Let T, P, U, V and N be bounded operators on H.

(i) If T = T ∗, then T is called selfadjoint.
(ii) If P = P 2 = P ∗, then P is called an orthogonal projection.
(iii) If U∗U = UU∗ = 1, then U is called unitary.
(iv) If V ∗V = 1, then V is called an isometry.
(v) If NN∗ = N∗N , then N is called normal.

Remark II.22: (i) An orthogonal projection P really is an algebraic pro-
jection from H down to its range PH. Because PH is closed, we have the
decomposition H = PH ⊕ (PH)⊥.

(ii) A unitary operator U corresponds to a “rotation of the coordinate
system”, i.e. it maps an orthonormal basis to another orthonormal basis.

(iii) An isometry V preserves lengths and angles, because for x ∈ H it holds

∥V x∥2 = ⟨V x, V x⟩ = ⟨x, V ∗V x⟩ = ⟨x, x⟩ = ∥x∥2

and because of the Polarisation Identity. The difference between a unitary
and an isometry is that isometries are not necessarily surjective. In the
finite-dimensional setting, an isometry automatically is unitary because of
the dimension formula. However, a standard-counterexample for the infinite-
dimensional setting is the following: Let (en)n∈N be an orthonormal basis of H.
Then, the operator declared by linear extension of

V : H −→ H, ei 7−→ ei+1

is an isometry, the so-called the one-sided shift. The adjoint V ∗ is uniquely
determined via V ∗ei = ei−1 for i ≥ 1 and V ∗(e0) = 0. The adjoint cannot be
an isometry, because it is not injective. Thus V is not unitary.
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Chapter III.

Unbounded Operators

Motivation III.1: We want to understand possible realisations of the canonical
commutation relation QP − PQ = i1.1

Immediate realisations are given on L2(R) := L2(R,B, λ) by the multipli-
cation operator Q and the differentiation operator P , which are declared for
a suitable function f via (Qf)(t) := tf(t) and (Pf)(t) := −if ′(t). For those
operators, we formally have

(QP − PQ)f(t) = −i[tf ′(t) − (tf(t))′] = −i[tf ′(t) − f(t) − tf ′(t)] = if(t).

However, those operators P and Q are not bounded, and it can be shown that
there are no bounded operators on L2(R) satisfying the canonical commutation
relations.

Theorem III.2: Let H be any Hilbert space. There are no bounded operators
P and Q on H which satisfy QP − PQ = i1.

Proof: Assume there were P,Q ∈ B(H) such that QP − PQ = i1. Then for
any natural number n we had QnP − PQn = inQn−1 ≠ 0. The initial step is
clear and assuming the claim holds for the natural number n, it holds

Qn+1P − PQn+1 = Qn(QP − PQ) + (QnP − PQn)Q = i(n+ 1)Qn,

and inductively Qn ̸= 0, which establishes the claim.
From the equality QnP − PQn = inQn−1 ̸= 0 we obtained

n∥Qn−1∥ = ∥QnP − PQn∥ ≤ ∥QnP∥ + ∥PQn∥ ≤ 2∥Qn−1∥∥Q∥∥P∥.

Because for any natural number n we knew that ∥Qn−1∥ ≠ 0, we were able to
cancel ∥Qn−1∥ and got

n ≤ 2∥Q∥∥P∥.
This had to hold for any natural number, which is absurd. □

1Compared to the canonical commutation relations in Chapter I, we set ℏ to 1.
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Chapter III. Unbounded Operators

Definition III.3: Let H be a Hilbert space. If there are a linear subspace
D(T ) ⊆ H and a linear map T : D(T ) → H, then T is called an unbounded
operator on H. The subspace D(T ) is called the domain. Usually, we assume
D(T ) to be dense in H (i.e. cl(D(T )) = H).

Note that we understand a bounded operator T on H as an unbounded
operator on H with D(T ) = H.

Example III.4 (The Position Operator): Let H = L2(R). Recall that a func-
tion f : R → C belongs to L2(R), if f is measurable with respect to the
Lebesgue measure and if

´
R

|f(t)|2 dλ(t) < ∞. The subspace

D(Q) :=
{
f ∈ L2(R) :

ˆ
R

t2|f(t)|2 dλ(t) < ∞
}

together with the linear map Q : D(Q) → L2(R), Q(f)(t) = tf(t) constitutes
an unbounded operator on L2(R) and indeed, D(Q) is dense in L2(R).

Note that Q is really unbounded on its domain. To see this, consider a
function f with

´
R

|f(t)|2 dλ(t) = 1, whose support is contained in a small open
interval around a large real number t0. Then

´
R
t2|f(t)|2 dλ(t) is roughly equal

to t20, thus ∥Qf∥/∥f∥ can become arbitrarily large, i.e. ∥Q∥ = ∞.

Remark III.5: We should choose the domain D(T ) of an unbounded operator
T as large as possible.

(i) If the operator T is continuous on its domain, then we can extend T from
the dense subset to the entire Hilbert space H. Given a sequence (xn)n∈N in
D(T ) that converges to x in H, then also (Txn)n∈N converges in H, say to y.
This y does not depend on the sequence converging to x, hence we can define
Tx := y.

(ii) If T is not bounded, we can still make the above extension, if we require
the convergence of all sequences Txn → y to the same y.

This is a weaker kind of continuity property on T , called “closeable”, and
extension of T gives a “closed” operator.

Definition III.6 (Extension): Let H be a Hilbert space and let T1 : D(T1) → H,
T2 : D(T2) → H be unbounded operators on H. If D(T1) ⊆ D(T2) and if for all
x ∈ D(T1) it holds T1x = T2x, then T2 is called an extension of T1 and in this
case, we write T1 ⊆ T2.
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Definition III.7 (Graph): Let H be a Hilbert space and let T : D(T ) → H be
an unbounded operator. Then

Γ(T ) := {(x, Tx) | x ∈ D(T )} ⊆ H × H

is called the graph of T . If Γ(T ) is closed in H × H, then T is called a closed
operator. If T has a closed extension, then T is called closeable. It then has a
smallest closed extension, called the closure of T , denoted by cl(T ).

Note that Γ(T ) ⊆ H × H is closed, if for any sequence (xn, yn)n∈N in Γ(T )
converging to (x, y) ∈ H × H, also (x, y) belongs to Γ(T ). Because the xn
belong to D(T ) by definition and the yn are precisely Txn, we can understand
this requirement as described before.

If an unbounded operator T on the Hilbert space H is closeable, then the
graph of its closure Γ(cl(T )) is indeed just cl(Γ(T )), i.e. the closure of the
graph of T .

Definition III.8 (Adjoint of Unbounded Operator): Let H be a Hilbert space
and let T : D(T ) → H be a densely defined unbounded operator. Let further-
more

D(T ∗) := {x ∈ H | There is y ∈ H such that
for all z ∈ D(T ) it holds ⟨x, Tz⟩ = ⟨y, z⟩}.

Then T ∗ : D(T ∗) → H, x 7→ T ∗y is called the adjoint of T .

Remark III.9: (i) We defined T ∗ in such a way that for all z ∈ D(T ) and
x ∈ D(T ∗) it holds ⟨Tz, x⟩ = ⟨z, T ∗x⟩.

(ii) By Riesz Representation Theorem, some element x of H belongs to
D(T ∗) if and only if D(T ) → C, z 7→ ⟨x, Tz⟩ is a continuous mapping, which
by the denseness of D(T ) in H indeed does belong to H′.

(iii) If T1 and T2 are unbounded operators and T2 is an extension of T1, then
T ∗

1 is an extension of T ∗
2 .

(iv) The domain D(T ∗) of T ∗ is clearly a linear subspace of H, but in general
it will not be dense in H. However, it is densly defined if and only if T is
closeable.

Theorem III.10: Let H be a Hilbert space and let T : D(T ) → H be an un-
bounded operator on H.
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Chapter III. Unbounded Operators

(i) The operator T is closeable if and only if D(T ∗) is dense in H. In this
case we have cl(T ) = T ∗∗.

(ii) If T is closeable, then cl(T ∗) = T ∗. In particular, adjoints of closeable
operators are always closed.

Proof: Why is being closeable related to the domain of the adjoint D(T ∗)?
Assume T was not closeable, i.e. there were sequences (xn)n∈N and (x̄n)n∈N
in D(T ) such that limn→∞ xn = x = limn→∞ x̄n, but there were y and ȳ in H
such that y ̸= ȳ and limn→∞ Txn = y and ȳ = limn→∞ T x̄n. For all w ∈ D(T ∗)
we then had

⟨y − ȳ, w⟩ = lim
n→∞

⟨T (xn − x̄n), w⟩ = lim
n→∞

⟨xn − x̄n, T
∗w⟩ = 0,

i.e. 0 ̸= y − ȳ belonged to D(T ∗)⊥ and thus D(T ∗) couldn’t be dense in H.
Formally, the proof goes via graphs. The map

V : H × H −→ H × H, (x, y) 7−→ (−y, x)

is unitary with Γ(T ∗) = V (Γ(T )⊥) and now everything can be deduced using
general facts for orthogonal complements of linear subspaces in a Hilbert space.
For example, given a linear subspace M ⊆ H, the orthogonal complement M⊥

is always closed and M ⊆ M⊥⊥. In fact, for a linear subspace M ⊆ H it holds
cl(M) = M⊥⊥. □

Proposition III.11: Let H be a Hilbert space and let T be an unbounded operator
on H. Then we have ranT⊥ = kerT ∗.

The kernel of a closed operator is always closed, however this is generally
not true for the range of a closed operator.

Proof: An element x of H belongs to ranT⊥ if and only if for all y ∈ D(T ) it
holds ⟨x, Ty⟩ = 0. This in turn holds if and only if x belongs to D(T ∗) and
T ∗x = 0, i.e. x ∈ kerT ∗. □
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Chapter IV.

Symmetric and Selfadjoint Operators

Definition IV.1: Let H be a Hilbert space and let T : D(T ) → H be an un-
bounded operator.

(i) If for all x and y in D(T ) it holds ⟨Tx, y⟩ = ⟨x, Ty⟩, then T is called
symmetric or Hermitean. Note that this means that T ∗ is an extension
of T .

(ii) If T = T ∗, then T is called selfadjoint. In this case, T is symmetric and
D(T ) = D(T ∗).

(iii) If T is closeable and cl(T ) is selfadjoint, then T is called essentially
selfadjoint.

Remark IV.2: (i) Note that a densely defined symmetric operator T is
closeable, since D(T ) ⊆ D(T ∗) and D(T ) already is dense in H.

(ii) The operator T is essentially selfadjoint if and only if T has precisely
one selfadjoint extension (namely its closure cl(T )).

Assume S and T were operators, T was an extension of S and both S and T
were selfadjoint. Then we had T = T ∗ ⊆ S∗ = S, i.e. S had to be equal to T .

(iii) The essentially selfadjoint operators form a proper subset of the sym-
metric operators.

(iv) All the good things (like the Spectral Theorem or the Theorem of
Stone) are only true for essentially selfadjoint operators, but not for symmetric
operators in general.

Theorem IV.3 (Basic Criterion for Selfadjointness): Let H be a Hilbert space
and let T : D(T ) → H be a symmetric unbounded operator on H. Then the
following are equivalent:

(i) The operator T is selfadjoint.
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(ii) The operator T is closed, ker(T ∗ + i) = {0} and ker(T ∗ − i) = {0}.
(iii) It holds ran(T − i) = H and ran(T + i) = H.

Of course, here T + i stands for T + i id and D(T + i) = D(T ).

Proof: “(i) =⇒ (ii)”: We assume that T = T ∗, i.e. T is a closed operator.
Let λ ∈ C − R be given and let x ∈ D(T ∗ − λ) = D(T ∗) = D(T ) such that
(T ∗ − λ)x = 0 = (T − λ)x, i.e. Tx = T ∗x = λx. But then

λ∗⟨x, x⟩ = ⟨λx, x⟩ = ⟨Tx, x⟩ = ⟨x, Tx⟩ = λ⟨x, x⟩.

Since we assumed that 0 ̸= λ∗ ̸= λ, this can only be true if ⟨x, x⟩ = 0. Thus x
must be zero and ker(T ∗ − λ) = {0}.

“(ii) =⇒ (iii)”: Assume that ker(T ∗ + i) = {0}. By Proposition III.11 we
obtain that ran(T − i)⊥ = ker(T − i)∗ = {0}, hence ran(T − i) ⊆ H must be
dense. It remains to show that ran(T − i) is closed. Assume that (yn)n∈N were
a sequence in ran(T − i) which converged to some y ∈ H. For the index n
there were an element xn ∈ H such that yn = (T − i)xn. Note that for any
z ∈ D(T − i) = D(T ) it holds

∥(T − i)z∥2 = ⟨(T − i)z, (T − i)z⟩
= ⟨Tz, Tz⟩ + i⟨z, Tz⟩ − i⟨Tz, z⟩ + ⟨z, z⟩ = ∥Tz∥2 + ∥z∥2.

For our problem at hand we use it as follows: Because (yn)n∈N converged to y,
it were a Cauchy sequence and we had

∥yn − ym∥2 = ∥(T − i)(xn − xm)∥2 = ∥T (xn − xm)∥2 + ∥xn − xm∥2,

which forced both the sequence (xn)n∈N and (Txn)n∈N to be Cauchy sequences
in H. Hence we had z ∈ H such that Txn converged to z and we had x ∈ H
such that xn converged to x. As T is closed, this meant that x belonged to
D(T ) and that Tx = z. But then y = limn→∞(T − i)xn = Tx− ix = (T − i)x
and thus y belonged to ran(T − i) and ran(T − i) is closed.

The proof of “(iii) =⇒ (i)” is similar in nature to the proofs of the other
implications and thus omitted. □

Theorem IV.4: Let H be Hilbert space and let T : D(T ) → H be a symmetric
operator. Then the following are equivalent:

(i) The operator T is essentially selfadjoint.
(ii) It holds ker(T ∗ + i) = {0} and ker(T ∗ − i) = {0}.
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(iii) The spaces ran(T − i) and ran(T + i) are dense in H.

Remark IV.5: (i) For a closed symmetric operator T and λ = ±i we have
the situation

Drawing is missing

and T is selfadjoint if and only if dim ker(T ∗ + λ∗) = 0 both for λ = i and
λ = −i.

Note that λ 7→ dim(T ∗ − λ) is constant both on the upper halfplane and the
lower halfplane.

(ii) The possible selfadjoint extensions of a symmetric operator T are com-
pletely characterised by its defect indices m := dim ker(T ∗−i) = dim ran(T+i)⊥

and n := dim ker(T ∗ + i) = dim ran(T − i)⊥. In particular, T is essentially self-
adjoint if and only if (m,n) = (0, 0). The operator T has selfadjoint extensions
if and only if (m,n) = (k, k) for some natural number k.

Example IV.6 (The Position Operator): Let H = L2(I), where I = [a, b],
[a,∞), (−∞, b] or (−∞,∞) and let T = Q be the position operator defined
via

T : D(T ) −→ H, (Tf)(t) = tf(t).

Then D(T ) = {f ∈ L2(I) | tf(t) ∈ L2(I)} is the domain of T . What is the
adjoint T ∗ of T? As stated before, the domain of the adjoint is

D(T ∗) = {g ∈ H | There is h ∈ H such that
for all f ∈ D(T ) it holds ⟨Tf, g⟩ = ⟨f, h⟩}.

That is, in our case,
ˆ
I

t∗f(t)∗ dt = ⟨Tf, g⟩ = ⟨f, h⟩ =
ˆ
I

f(t)∗h(t) dt,

thus we get the following determining equation for g: “For all f ∈ D(T ) it
holds

´
I
f(t)∗[tg(t) − h(t)] dt = 0”. Hence, tg(t) − h(t) has to be zero almost

everywhere (with respect to the Lebesgue measure), i.e. h(t) = tg(t) ∈ L2(I),
which requires g to belong to D(T ). Finally, because of (T ∗g)(t) = h(t) = tg(t),
the operator T is really selfadjoint. Note that the condition (m,n) = (0, 0) is
obvious in this case.
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Example IV.7 (The Momentum Operator): The momentum operator T was
formally given by i d

dt
, i.e. Tf = if ′. In the following, we want to make this

rigorous. Let H be the Hilbert space L2([0, 1]) and let

D(T ) := {f ∈ L2([0, 1]) | f is continuously differentiable, f(0) = 0 = f(1)}.

The operator T is symmetric, since for f and g in D(T ) we have

⟨Tf, g⟩ =
ˆ 1

0
i∗f ′(t)∗g(t) dt

= −i
ˆ 1

0
f ′(t)∗g(t) dt

= i
ˆ 1

0
f(t)∗g′(t) dt−i[f ∗g]10 =

ˆ 1

0
f(t)∗ig(t) dt = ⟨f, Tg⟩

and in particular T ⊆ T ∗. Now for the adjoint of T . Let g be an element of
D(T ∗), i.e. there is h = T ∗g such that for all f ∈ D(T ) it holds

ˆ 1

0
g(t)∗if ′(t) dt = ⟨g, Tf⟩ = ⟨h, f⟩ =

ˆ 1

0
h(t)∗f(t) dt .

Without proof we make use of the fact that there is a function H such that
H ′ = h almost everywhere, i.e. H(t) =

´ 1
0 h(s) ds, and thus

ˆ 1

0
h(t)∗f(t) dt =

ˆ 1

0
H ′(t)∗f(t) dt

= −
ˆ 1

0
H(t)∗f ′(t) dt+H(1)∗f(1) +H(0)∗f(0)

= −
ˆ 1

0
H(t)∗f ′(t) dt .

Hence for all f ∈ D(T ) it holds
´ 1

0 f
′(t)[ig(t)∗ +H(t)∗] dt = 0. Consequently

ig∗ +H∗ ∈ {f ′ | f ∈ D(T )}⊥ = C1. For g we thus get g∗ = iH∗ + c, where c
is some constant. The function iH∗ + c is absolutely continuous. Note that
no boundary conditions on g are imposed by our calculation and note that we
have T ∗g = h = H ′ = ig′, which makes sense because absolutely continuous
functions are almost every differentiable. Our calculation thus shows that
D(T ∗) is contained in the set

{g ∈ L2([0, 1]) | g is absolutely continuous and g′ ∈ L2([0, 1])}.
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By directly checking we also get the other inclusion. In particular, we obtain
that T is not selfadjoint.

As T is symmetric, it is closeable, but not closed. We get its closure as
cl(T ) = T ∗∗ with domain

D(cl(T )) = {f ∈ L2([0, 1]) | f is absolutely continuous,
f ′ ∈ L2([0, 1]) and f(0) = 0 = f(1)}

and cl(T )f = if ′. In particular we see that T ∗ is not symmetric anymore,
because T ∗∗ ⊊ T ∗. Because of the chain of inclusions cl(T ) = T ∗∗ ⊊ T ∗ = cl(T )∗,
the closure cl(T ) is not selfadjoint and T is not essentially selfadjoint.

To answer the question whether we can find a more well-behaved selfadjoint
extension of T is answered by the defect indices.

We have m = dim ker(T ∗ − i) = 1, as the solutions of T ∗f = if are precisely
the functions cet, where c is some constant. The other defect index is one, too,
thus we have the defect indices (m,n) = (1, 1).

What do we make of this? How can we find a selfadjoint extension S? We
want to have that

i
ˆ 1

0
f(t)∗g′(t) dt = ⟨f, Sg⟩

= ⟨Sf, g⟩

= −i
ˆ 1

0
f ′(t)∗g(t) dt

= i
ˆ 1

0
f(t)∗g′(t) dt−i[f(1) ∗ g(1) − f(0)∗g(0)]

and we need some condition that is in a sense weaker than f(0) = 0 = f(1). If
we impose the condition f(0) = 0 = f(1), then we do not need any conditions
for g. If instead we ask f(1) = αf(0), then we also need that g(1) = αg(0) for
some α ∈ T = {z ∈ C | |z| = 1} and we get that

f(1)∗g(1) − f(0)∗g(0) = α∗f(0)∗αg(0) − f(0)∗g(0) = 0.

For each α ∈ T we define an operator Tα with domain

D(Tα) := {f ∈ L2([0, 1]) | f is absolutely continuous,
f ′ ∈ L2([0, 1]) and f(1) = αf(0)}

and action Tαf := if ′. All those operators Tα are (different) selfadjoint
extensions of T . It can be shown that those are precisely all selfadjoint
extensions of T .
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Chapter V.

Spectrum and Spectral Theorem

Let H be a finite-dimensional Hilbert space and let A be a (bounded) linear
operator on H. Then A can be identified with a matrix and the spectrum of A,
denoted σ(A), is given by the eigenvalues of A.

The Spectral Theorem for selfadjoint operators ensures that selfadjoint opera-
tors (respectively their associated transformation matrices) may be diagonalised.

In the following, we aim to generalise results of this shape and form to
infinite-dimensional Hilbert spaces H and unbounded operators on said Hilbert
space.

Lets start with the spectrum. In the finite-dimensional setting, a complex
number λ belongs to σ(A) if and only if it is an eigenvalue of A, i.e. if
there is x ∈ H − {0} such that Ax = λx. This is equivalent to saying that
(A− λ id)x = 0. Because of the dimension formula, this happens if and only if
A− λ id is not invertible.

Note that if H is finite-dimensional, injectivity of an operator A ∈ B(H) is
the same as surjectivity and thus even bijectivity.

The “correct” generalisation of the notion of eigenvalues to infinite dimension
is asking the question, if (A− λ id)−1 exsists.

Definition V.1: Let H be Hilbert space and let T : D(T ) → H be a closed
unbounded operator on H.

(i) The set

ρ(T ) := {λ ∈ C | T − λ id : D(T ) → H is a bijection
and (T − λ id)−1 ∈ B(H)}

is called the resolvent set of T and σ(T ) := C−ρ(T ) is called the spectrum
of T .
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(ii) Denote

σp(T ) := {λ ∈ C | There is x ∈ H − {0} such that Tx = λx}
σc(T ) := {λ ∈ C− σp(T ) | ran(T − λ id) is dense in H,

but (T − λ id)−1 : ran(T − λ id) → D(T ) is not bounded}
σr(T ) := {λ ∈ C− σp(T ) | ran(T − λ id) is not dense in H}

The set σp(T ) is called point spectrum of T , σc(T ) is called the continuous
spectrum of T and σr(T ) is called the residual spectrum of T .

It can be shown that σ(T ) decomposes as σ(T ) = σp(T ) ∪ σc(T ) ∪ σc(T ) and
additionally that this union is in fact disjoint.

Remark V.2: (i) The point spectrum consists of eigenvalues, for which there
are eigenvectors, i.e. for λ ∈ σp(T ) we have non-zero solutions for the equation
Tx = λx.

(ii) The continuous spectrum consists of complex numbers λ, for which
we have approximate eigenvectors. More precisely, let λ ∈ σc(T ). Then
T − λ id : D(T ) → ran(T − λ id) is a bijective mapping and ran(T − λ id) is
dense, but (T − λ id)−1 : ran(T − λ) → D(T ) is, by assumption, not bounded.
That is, we find a sequence (xn)n∈N in ran(D − λ id) such that for all n ∈ N
it holds ∥xn∥ = 1, but the sequence defined via αn := ∥(T − λ)−1xn∥ tends to
infinity when n gets large.

If we put yn := α−1
n (T − λ id)−1xn (those are normalised), then we ob-

tain ∥(T − λ id)yn∥ = α−1
n ∥xn∥ → 0. The vectors yn are called approximate

eigenvectors and Tyn ≈ λy.
(iii) In many cases the residual spectrum is absent, in particular: If T is

selfadjoint, then σr(T ) = ∅.
(iv) For the spectrum of a closed symmetric operator there are the following

possibilities:
(1) σ(T ) = C+

0 := cl(H),
(2) σ(T ) = C−

0 := cl(−H),
(3) σ(T ) = C,
(4) σ(T ) ⊆ R,

and it holds σ(T ) ⊆ R if and only if T is selfadjoint.

Example V.3 (Position Operator): Let H be the Hilbert space L2(I) for some
interval I ⊆ R and consider the operator T : D(T ) → H, which is defined via
(Tf)(t) = tf(t) on D(T ) = {f ∈ L2(I) | Tf ∈ L2(I)}.
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By Example IV.6 we know that T = T ∗. Thus, σ(T ) ⊆ R. First, we
look for eigenvalues λ ∈ R of T . The eigenvalue equation Tf = λf reads
tf(t) = λf(t) almost everywhere and it has no non-trivial solution in H. That
means σp(T ) = ∅.

Intuitively speaking, the eigenvalue equation can only be fulfilled by a non-
zero function that vanishes everywhere but in one point, where it “takes the
value infinity”, thus we should focus attention on the δ-distribution. For λ ∈ I,
we can approximate the δ-distribution at λ with actual elements of H, e.g. by
the functions declared via

δn : I −→ R, x 7−→
√
nχ[−1/2n,1/2n](x).

For those we have ∥δn∥ = 1 and Tδn ≈ λδn. Hence any λ ∈ I belongs to σc(T ).
For λ ∈ R− I, then λ belongs to ρ(T ), since we can just write down the inverse

(T − λ)−1f(t) = 1
t− λ

f(t),

which is again square-integrable on I. This means σp(T ) = ∅ = σr(T ) and
σ(T ) = σc(T ) = I ⊆ R.

Motivation V.4: (i) Let H be a finite-dimensional Hilbert space of dimension
n and let A ∈ B(H) be a selfadjoint operator. Since the spectrum σ(A) consists
only of real numbers, we may write σ(A) = {λ1 < λ2 < · · · < λk}. For λ ∈ σ(A),
denote by

Hλ := {x ∈ H | Ax = λx}

the eigenspace to the eigenvalue λ. The Spectral Theorem for selfadjoint
matrices can be stated in the following way: The Hilbert space H decomposes
into the orthogonal direct sum H = ⊕

λ∈σ(A) Hλ, i.e. eigenspaces to different
eigenvalues are orthogonal and for any element x ∈ H there are eigenvectors
xi ∈ Hλi

, 1 ≤ i ≤ k, such that x = ∑k
i=1 xi.

Denote by Pλ : H → Hλ the orthogonal projection onto the eigenspace Hλ.
Then the eigenvectors xi in the representation of x from above are precisely
the Pλi

(x). Finally, we may write

Ax =
k∑
i=1

Axi =
k∑
i=1

λixi =
k∑
i=1

λiPλi
(x),

thus A = ∑k
i=1 λiPλi

= ∑
λ∈σ(A) λPλ.
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(ii) We’d like to generalise this to infinite dimensions. Thus, consider an
infinite-dimensional Hilbert space H and an selfadjoint operator T on H. We
know that its spectrum may be written as σ(T ) = σp(T ) ∪ σc(T ), and while for
σp(T ) the Spectral Theorem works as above, for λ ∈ σc(T ), it holds Hλ = {0}
and Pλ = 0, hence the approach described above fails.

Consider the multiplication operator Q on L2(R), defined via (Qf)(t) = tf(t).
For a real number λ, let ∆ be a small interval with λ ∈ ∆ and let

H∆ := {f ∈ L2(R) | f |R−∆ ≡ 0}

and E∆ : H → H∆ be the orthogonal projection onto H∆.
Using this notation, for ∆1 ∩ ∆2, the corresponding spaces H∆1 and H∆2 are

orthogonal.
If ∆ = ∆1 ∪· ∆2, then for the corresponding orthogonal projections it holds

E∆ = E∆1 + E∆2 ; in particular H∆ = H∆1 ⊕ H∆2 .
If R = ⋃

i ∆i, then H = ⊕
i Hi.

How can we now represent Q using this data? If |∆| is small and x belongs
to H∆, then Qx ≈ λ∆ for some fixed λ ∈ ∆. Hence we may write

Qx =
∑
i

QE∆i
x ≈

∑
i

λiE∆i
x (λi ∈ ∆i).

We might hope that Q corresponds to the limit

lim
|∆i|→0

∑
i

λiE∆i
=
ˆ
λ dE(λ),

where E(λ) := E(−∞,λ). Indeed, any selfadjoint operator T may be written
as an operator-valued Stieltjes integral T =

´
λ dE(λ) for a corresponding

so-called resolution of identity λ 7→ E(λ) =: Eλ.

Definition V.5: Let H be a Hilbert space and let (E(λ))λ∈R be a family of
bounded operators on H. If for each λ ∈ R the operator Eλ is an orthogonal
projection, i.e. Eλ = E2

λ = E∗
λ; if for any real numbers λ, µ with λ ≤ µ it holds

EλEµ = EµEλ = Eλ; if for all x ∈ H it holds

lim
λ→−∞

Eλx = 0, lim
λ→+∞

Eλx = x

and if λ 7→ Eλ is right-continuous, i.e. for all x ∈ H it holds limε↓0 Eλ+εx = Eλx,
then this family is called a resolution of identity or projection-valued measure.
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Remark V.6: (i) Note that the properties of a resolution of identity enforce
that for each x ∈ H the function

R −→ [0,∞), λ 7−→ ⟨x,Eλx⟩ = ⟨x,E∗
λEλx⟩ = ∥Eλx∥2

has precisely the properties of a distribution function (see Definition A.1), i.e.
we can define Lebesgue-Stieltjes integrals of the form

´
f(λ) d⟨x,Eλx⟩.

(ii) In order to define our operator-valued Stieltjes integral
´
f(λ) dE(λ) as

operator, we need to define the inner products ⟨x,
´
f(λ) dE(λ) y⟩ for suitable

elements x and y in H.
By polarisation it suffices to define this for the special case x = y, but then

we can define ⟨x,
´
f(λ) dE(λ)x⟩ =

´
f(λ) d⟨x,Eλx⟩. For each x, the integral´

f(λ) d⟨x,Eλx⟩ is nothing but an ordinary Stieltjes integral.

Proposition V.7: Let (Eλ)λ∈R be a projection valued measure and let f : R → C

be measurable. Then there is a densely defined operator Tf =
´
f(λ) dE(λ) with

domain D(Tf) = {x ∈ H :
´

|f(λ)|2 d⟨x,Eλx⟩ < ∞} that, for x ∈ D(Tf), is
uniquely determined via

⟨x, Tfx⟩ =
ˆ
f(λ) d⟨x,Eλx⟩ .

Furthermore, for any x ∈ D(Tf ) it holds ∥Tfx∥2 =
´

|f(λ)|2 d⟨x,Eλx⟩.

Theorem V.8 (Spectral Theorem):

(i) Let (Eλ)λ∈R be a projection valued measure. Then T :=
´
λ dEλ is a

selfadjoint operator with domain D(T ) = {x ∈ H |
´
λ2 d⟨x,Eλx⟩ < ∞}.

(ii) Let T be an unbounded selfadjoint operator. Then there is a uniquely
determined resolution of identity (Eλ)λ∈R such that T =

´
λ dEλ.

Example V.9: (i) Let H be a finite-dimensional Hilbert space of dimension n,
let A be a selfadjoint operator and let σ(A) = {λ1 < · · · < λk}. Furthermore,
denote by Hλ the eigenspace with respect to λ and by Pλ the orthogonal
projection onto Hλ. Then Eλ = ∑

λi≤λ Pλ and A =
´
λ dEλ = ∑k

i=1 λiPλi
.

(ii) Let Q be the multiplication operator on L2(R), i.e. (Qf)(t) = tf(t).
Then the resolution of identity (Eλ)λ∈R is given by

(Eλf)(t) =
f(t), if t ≤ λ,

0, if t > λ

and Q may be written as Q =
´
λ dE(λ).
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Theorem V.10 (Functional Calculus): Let H be a Hilbert space and let T be a
selfadjoint operator on H with spectral decomposition T =

´
λ dE(λ).

(i) For each measurable function f : R → C there is an operator

f(T ) :=
ˆ
f(λ) dE(λ),

with D(f(T )) = {x ∈ H |
´

|f(λ)|2 d⟨x,Eλx⟩ < ∞} that is uniquely
determined by ⟨x, f(T )x⟩ =

´
f(λ) d⟨x,Eλx⟩ for all x ∈ D(f(T )).

(ii) Let f, g : R → C be measurable functions. Then f(T )g(T ) ⊆ (fg)(T ) and
D(f(T )g(T )) = D(g(T )) ∩D((fg)(T )).

(iii) For a measurable function f : R → C it holds

f(T )∗ =
ˆ
f(λ)∗ dE(λ) = f ∗(T ).

In particular we obtain that by applying a real-valued function f to our
operator, we end up with a selfadjoint operator f(T ).

Remark V.11: (i) Note that this gives a very general functional calculus for
selfadjoint operators. For unbounded operators not even polynomials are a
priori well-defined. Thinking a bit about the equation T 2x = T (Tx) makes
clear that T 2 might not have a dense domain.

(ii) For Borel sets B ⊆ R and f = χB we get our “projection valued measure”
µT defined via

B 7−→ µT (B) = χB(T ) =
ˆ
B

dE(λ) =: E(B)

with the following properties:
• For each Borel set B the operator E(B) is an orthogonal projection,
• It holds E(∅) = 0 and E(R) = 1,
• For Borel sets B1 and B2 we have E(B1)E(B2) = E(B1 ∩B2),
• If (Bn)n∈N is a sequence of pairwise disjoint Borel sets and B = ⋃

n∈NBn,
then for all x ∈ H it holds E(B)x = ∑

n∈NE(Bn)x.
(iii) Let (Bi)1≤i≤n be a family of pairwise disjoint Borel sets. Then

n∑
i=1

αiE(Bi) =
ˆ ( n∑

i=1
αiχBi

)
dE(λ)
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and ∥∑n
i=1 αiE(Bi)∥ = max{|αi| | E(Bi) ̸= 0}. In the same way we see that∥∥∥∥∥

ˆ
f(λ) dE(λ)

∥∥∥∥∥ = ess sup{|f(λ)| | λ ∈ supp(E)},

where supp(E) is the smallest closed subset C ⊆ R such that E(Cc) = 0. Let λ0
be some fixed real number. If f(λ) = (λ−λ0)−1, then (T−λ0)−1 =

´ 1
λ−λ0

dE(λ)
and

ess sup
λ∈supp(E)

∣∣∣∣ 1
λ− λ0

∣∣∣∣ = ∥(T − λ0)−1∥ =
Γ < ∞, if λ0 ∈ ρ(T ),

∞, if λ0 ∈ σ(T )

which yields that supp(E) = σ(T ) and thus
´
f dE(λ) =

´
σ(T ) f dE(λ). Thus

the function f only needs to be defined on the spectrum σ(T ).

Aximoatic V.12 (von Neumann Axiomatic of Quantum Mechanics):

(i) A quantum mechanical system corresponds to a complex separable Hilbert
space H.

(ii) A pure state corresponds to a unit vector x ∈ H, i.e. ∥x∥ = 1. If we
take α ∈ T, then αx describes the same state as x.

(iii) Observables correspond to selfadjoint operators on H.
(iv) The measurement of an observable corresponding to a selfadjoint op-

erator T =
´
λ dE(λ) on a system corresponding to x ∈ H has as possible

outcomes values λ in σ(T ) with probability distribution given by d⟨x,E(λ)x⟩,
i.e. for a real number λ0 it holds P ({λ ∈ (−∞, λ0]}) = ⟨x,E(λ0)x⟩. More
generally for any Borel set B ⊆ R it holds P ({λ ∈ B}) = ⟨x,E(B)x⟩.

(v) In the setting of (iv) and for a measurable function f : σ(T ) → R the
selfadjoint operator f(T ) corresponds to the composition of the oberservable
followed by f .

Remark V.13: (i) Let λ be an element of σp(T ). Then E({λ}) is the pro-
jection onto vectors which give value λ with probability one.

(ii) If λ belongs to σc(T ), then E({λ}) = 0, so the probability of measuring
exactly λ is zero. However, for any ε > 0 and the interval ∆ε := (λ− ε, λ+ ε),
it holds E(∆ε) ̸= 0, thus we have states xε ∈ H such that the measurement in
such a case gives with probability one a result in ∆ε.
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Chapter VI.

Theorem of Stone

The time evolution of a quantum mechanical system is given by time evolution
operators (Ut)t≥0. If we denote by ψ0 the unit vector that describes our system
at time T = 0 and by ψt the system at time T = t, then it is given by ψt = Utψ0.

Standing to reason we demand that the operators Ut are isometries, i.e.
∥ψt∥ = ∥ψ0∥. If those Ut are also invertible, then they are in fact unitaries.
Furthermore, we demand that U0 = 1 and that UtUs = Ut+s.

For a given quantum mechanical system, we want to see how do these time
evolution operators come about. It will turn out that there is a selfadjoint
operator H such that Ut = e−itH and that the unitarity of the Ut corresponds
to the property of H being selfadjoint. Given Ut = e−itH it holds d

dt
Ut = −iHUt

respectively
i dUt
dt
ψ = HUtψ, i ∂ψt

∂t
= Hψt. (VI.1)

The equation above is the famous Schrödinger Equation. The operator H is
called Hamilton operator of the system and it governs the time evolution.

In the following, we will thus address the following mathematical problem:
Given a unitary group (Ut)t∈R, is there a generator A for this group, i.e. is
there an operator A such that Ut = e−itA?

Theorem VI.1: Let H be a Hilbert space and let A ∈ B(H) be a selfadjoint
operator. For a real number t, denote

Ut := eitA =
∞∑
n=0

(it)n
n! An.

Then we have the following:

(i) For all real numbers t, Ut is unitary with U∗
t = U−t.

(ii) For t = 0, we obtain U0 = 1.
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Chapter VI. Theorem of Stone

(iii) For all t, s ∈ R it holds UtUs = Us+t.
(iv) For t → 0 we have ∥Ut − 1∥ → 0.

Thus we get: If A is a selfadjoint bounded operator on H, then we obtain a
norm continuous unitary group (Ut)t∈R.

Theorem VI.2: Let (Ut)t∈R be a norm continuous unitary group on a Hilbert
space H, that is all operators are unitary, the operator U0 is the identity, for
all t, s ∈ R it holds UtUs = Ut+s and it holds limt→0∥Ut − 1∥ = 0. Then there
exists a uniquely determined selfadjoint bounded operator A such that Ut = eitA.

Proof: Intuitively, A should be given as A = d
dt
Ut|t=0. However, a priory we do

not know that this limit exists. Maybe a better way for obtaining A is trying
to make sense of ˆ t

0
Uτ dτ = 1

iA [Uτ ]τ0 = 1
iA [Ut − 1],

which would give that

iA = 1
t
(Ut − 1)[1

t

ˆ t

0
Uτ dτ ]−1.

In the following, we denote Xt := 1
t

´ t
0 Uτ dτ . If we can show the above, then

we should have for times t and s that iA = 1
t
(Ut − 1)X−1

t = 1
s
(Us − 1)X−1

s and
thus

1
t
(Ut − 1)Xs = 1

s
(Us − 1)Xt. (VI.2)

We will now proceed showing the above equation. By the norm continuity of
our family we get that ∥Xt − 1∥ → 0 as t → 0 and the inverse X−1

t exists in
B(H) for t small enough, say for t < t0. For 0 < s < t we have

1
t
(Ut − 1)Xs = 1

t
(Ut − 1)1

s

ˆ s

0
Uτ dτ

= 1
st

ˆ s

0
(UtUτ − Uτ ) dτ

= 1
st

ˆ s

0
(Ut+τ − Uτ ) dτ = 1

st

ˆ t

0
(Us+τ − Uτ ) dτ = 1

s
(Us − 1)Xt

If we now fix t in Eq. (VI.2) and send s to zero, then we get

1
t
(Ut − 1) = lim

s→0

1
t
(Ut − 1)Xs = lim

s→0

1
s

(Us − 1)Xt.
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Denoting iA := lims→0
1
s
(Us − 1) we get from the above that iAXt = 1

t
Ut − 1,

and thus

Ut = 1 + iAtXt

= 1 + iA
ˆ t

0
Uτ dτ

= 1 + iA
ˆ t

0

(
1 + iA

ˆ τ

0
Uσ dσ

)
dτ = 1 + itA+ (iA)2

¨
Uτ dσ dτ . . .

By iteration and checking details, Ut = ∑∞
n=0[(it)n/n!]An = eitA follows as

claimed. □

The theorem just proven establishes a correspondence between bounded
selfadjoint operators A on a Hilbert space and norm continuous unitary groups
(Ut)t∈R via Ut = eitA. Unfortunately, norm continuous time evolutions or
bounded Hamiltionians are not realistic in many situations.

Theorem VI.3: Let H be a Hilbert space and let T be an unbounded selfadjoint
operator on H. For real numbers t, define Ut := eitT via functional calculus, i.e.
T =

´
λ dE(λ) and Ut :=

´
eitλ dE(λ). Then we have:

(i) All operators Ut are unitary.
(ii) The operator U0 is the identity.
(iii) For real numbers r and s it holds UsUt = Us+t.
(iv) For x ∈ H it holds limt→0∥Utx− x∥ = 0.

The proof of this statement can be done as an exercise. The properties just
rely on functional calculus.

A family (Ut)t∈R with the properties from VI.3 is called strongly continuous
one parameter unitary group or briefly a strongly continuous unitary group.

Theorem VI.4 (of Stone): Let (Ut)t∈R be a strongly continuous unitary group.
Then there is a uniquely determined unbounded selfadjoint operator T such that
for all real numbers t it holds Ut = eitT .

Proof: Again, we hope to find that T = −i d
dt
Ut|t=0 does the job. The domain

of our unbounded operator T should be

D(T ) :=
{
x ∈ H : iTx := lim

t→0

1
t
(Utx− x) exists

}
.
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Chapter VI. Theorem of Stone

Our main problem will be showing that D(T ) is indeed dense in H. As before,
for t ∈ R we let Xt := 1

t

´ t
0 Uτ dτ . For s → 0 we then obtain ∥Xsy − y∥ → 0.

Even in this more general situation, for sufficiently small s and t we still have

1
t
(Ut − 1)Xs = 1

s
(Us − 1)Xt.

Fixing t and sending s to zero, we obtain again that

1
t
(Ut − 1)y = lim

s→0

1
t
(Ut − 1)Xsy = lim

s→0

1
s

(Us(Xty) −Xty)

which shows that for vectors y ∈ H and t > 0, the x = Xty belong to D(T ).
Since ∥Xty − y∥ → 0 when t → 0, the set {Xty | y ∈ H, t > 0} ⊆ D(T ) is
dense in H.

Now we have to show that T is indeed selfadjoint. Let therefore y ∈ D(T ∗) be
given. Then there is z ∈ H such that for all x ∈ D(T ) it holds ⟨Tx, y⟩ = ⟨x, z⟩
(and this z will be T ∗y). Now for all x ∈ D(T ) it holds

⟨Tx, y⟩ =
〈

−i lim
t→0

1
t
(Utx− x), y

〉
= i lim

t→0

1
t
⟨Utx, y⟩ − ⟨x, y⟩)

= i lim
t→0

1
t
(⟨x, U−ty⟩ − ⟨x, y⟩)

= −i lim
t→0

1
−t

⟨x, U−ty − y⟩ =
〈
x,−i lim

t→0

1
−t

(U−ty − y)
〉

= ⟨x, z⟩

which yields that limt→0
1
t
(Uty − y) exists and equals iT ∗y. Hence y belongs

to the domain of T and T ∗y = Ty, which means that T is indeed a selfadjoint
generator. It remains to show that indeed, for any real number t, it holds
Ut = eitT . This is more or less straight forward and thus omitted. □
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Chapter VII.

Canonical Commutation Relations
and Weyl Relations

Definition VII.1: Let H be a Hilbert space and let P and Q be selfadjoint
operators on H. If they are defined on the same dense domain D ⊆ H such
that P (D) ⊆ D, Q(D) ⊆ D and such that on D it holds

[P,Q] := PQ−QP = −i1,

they are said to satisfy the canoncial commutation relations (often abbreviated
CCR). In physics, one usually requires [P,Q] = −iℏ1.

Remark VII.2: (i) As we know from (3.2), there are no bounded realisations
of the canonical commutation relations.

(ii) If we put a := 2−1/2(Q+ iP ) and a∗ := 2−1/2(Q− iP ), then

[a, a∗] = 1
2(i[P,Q] − i[Q,P ]) = 1,

thus the canonical commutation relations can be expressed equivalently as
[a, a∗] = aa∗ − a∗a = 1.

(iii) There also is a “fermionic analogue”, called the canonical anticommuta-
tion relations (often abbreviated CAR) and given by {b, b∗} := bb∗ + b∗b = 1.
Those however do have bounded realisations, like the matrices

b =
(

0 0
1 0

)
, b∗ =

(
0 1
0 0

)
.

Example VII.3 (Schrödinger Representation): Let H be the Hilbert space
L2(R) and let D := S(R) be the functions of rapid decrease, i.e.

S(R) =
{
f ∈ L2(R) : For all n,m ∈ N it holds lim

|t|→∞
tn
dmf

dtm
= 0

}
.
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Chapter VII. Canonical Commutation Relations and Weyl Relations

Because the position operator (Qf)(t) = tf(t) as well as the momentum
operator (Pf)(t) = −if ′(t) map S(R) into itself and because Q and P are
essentially selfadjoint on S(R), this domain is a suitable candidate for the
canonical commutation relations. Indeed, P and Q satisfy the canonical
commutation relations: For all f ∈ S(R) it holds (PQ−QP )f = −if .

The natural question to ask is whether this is (up to unitary equivalence)
the only irreducible representation of the canonical commutation relations.

Remark VII.4: (i) Note that with a = 2−1/2(Q+iP ) and a∗ := 2−1/2(Q−iP )
we find a vector Ω in D such that aΩ = 0. Such an Ω is called a vacuum vector.
Indeed,

0 = aΩ = 1√
2

(Q+ iP )Ω = 1√
2

(tΩ(t) + Ω′(t)),

which is equivalent to Ω′(t) = −tΩ(t), i.e. Ω is given by Ω(t) = Ce−t2/2 for
some real constant C.

(ii) If we have an irreducible representation of the canonical commutation
relations with such a vacuum vector, i.e. [a, a∗] = 1 and aΩ = 0 with ∥Ω∥ = 1,
everything is uniquely determined. Let e0 := Ω and for n ∈ N put en := a∗nΩ.
Then for any natural number n it holds a∗en = en+1 and aen = nen−1, which
can be shown by induction as

aen = aa∗nΩ
= aa∗a∗n−1Ω
= a∗aen−1 + en+1 = a∗(n− 1)en−2 + en−1 = (n− 1)en−1 + en−1 = nen−1.

By irreducibility the collection (en)n∈N span a dense subset of H. Furthermore
all inner products are determined, as we have

⟨en, em⟩ = ⟨a∗nΩ, a∗mΩ⟩ = ⟨Ω, ana∗mΩ⟩ = ⟨Ω, an−mamem⟩ = ⟨Ω, an−mm!Ω⟩

and the last inner product equals 0 if n > m and m! if n = m. This yields
⟨en, em⟩ = 0 for n ̸= m and ∥en∥ = (n!)1/2. Usually in this context one thus
takes fn := (n!)−1/2en which then is an orthonormal basis.

(iii) If we are looking for irreducible representations of [a, a∗] = 1, then
the question for equivalence to the Schrödinger representation is equivalent to
asking for the existence of a vacuum vector Ω with aΩ = 0.

(iv) We rewrite the canonical commutation relations in terms of the unitary
groups. Consider the Schrödinger representation from Example VII.3 and
consider the position operator Q as well as the momentum operator P . Denote
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the corresponding unitary groups by Ut := eitP and Vt := eitQ. Those act as
(Utf)(x) = f(x+ t) and (Vtf)(x) = eitxf(x). Thus for some function f we have

(UtVsf)(x) = (Vsf)(x+ t) = eis(x+t)f(x+ t),
(VsUtf)(x) = eisx(Utf)(x) = eisxf(x+ t).

Hence we find the relation UtVs = eistVsUt.

Definition VII.5: Let (Ut)t∈R and (Vs)s∈R be strongly continuous unitary groups
on the same Hilbert space H. If for all s, t ∈ R it holds

UtVs = eitsVsUt,

then the pair (Ut, Vs)t,s∈R is called a representation of the Weyl relations.
If there is no non-trivial sub-Hilbert space K ⊆ H such that for all s, t ∈ R

it holds UtK ⊆ K and VsK ⊆ K, the representation is called irreducible.
Let (Ut, Vs)t,s∈R and (U ′

t , V
′
s )t,s∈R (living on the Hilbert space H respectively

H′) be two representations of the Weyl relations. If there is a unitary operator
W : H → H′ such that for all s, t ∈ R it holds Ut = W ∗U ′

tW and Vs = W ∗V ′
sW ,

then (Ut, Vs)t,s∈R and (U ′
t , V

′
s )t,s∈R are called unitarily equivalent.

In other words: For two unitarily equivalent representations and real numbers
t and s, we have the commutative diagram

H H′

H H′

W

Ut Vs U ′
t V ′

s

W ∗

Proposition VII.6: The Schrödinger representation of the Weyl relations on
the Hilbert space L2(R) given by (Utf)(x) = f(x+ t) and (Vsf)(x) = eitxf(x)
is irreducible.

Proof: Assume there were a non-trivial invariant sub-Hilbert space K ⊆ H such
that for all t, s ∈ R it held UtK ⊆ K and VsK ⊆ K. Then we had 0 ̸= f ∈ K
and 0 ̸= g ∈ K⊥, which yielded for all s, t ∈ R that ⟨g, VtUsf⟩ = 0 (since
Usf ∈ K and VtUsf ∈ K), i.e. for all s, t ∈ R it held

0 =
ˆ
g(x)∗eitxf(x+ s) dx .

If we fix s and define hs(x) := g(x)∗f(x + s) then the above equation reads
“For all t ∈ R: F(hs)(t) = 0”, where F denotes the Fourier transform, and thus
by injectivity of the Fourier transform hs = 0 for any real number s. Hence,
either f or g had to be zero in contradiction to our assumption. □
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Chapter VIII.

The Stone-von Neumann Uniqueness
Theorem

Theorem VIII.1 (Uniqueness Theorem): Any representation of the Weyl re-
lations is unitarily equivalent to an at most countable direct sum of Schrödinger
representations. In particular, any irreducible representation of the Weyl rela-
tions is unitarily equivalent to the Schrödinger representation.

Remark VIII.2: (i) “Beweisansätze” by Stone in 1930.
(ii) The first rigorous proof was given by von Neumann in 1931.
(iii) The idea of the proof is finding the vacuum vectors in the representation,

from which everything can be reconstructed. To find a vacuum Ω, we need
to find a projection P onto Ω, which must be constructed from the Ut and Vs
from our representation.

In the following, we fix a Hilbert space H and a representation (Ut, Vs)t,s∈R
of Weyl relations.

Notation VIII.3: (i) For any tuple (s, t) of real numbers, we put

W (s, t) := e− 1
2 istUsVt = e

1
2 istVtUs.

(ii) For any integrable function h : R2 → C, i.e.
˜

|h(s, t)| ds dt < ∞, we
define a bounded operator on H via Wh :=

´
h(s, t)W (s, t) ds dt. This is

rigorously defined by

⟨f,Whg⟩ =
ˆ
h(s, t)⟨f,W (s, t)g⟩ ds dt .
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Chapter VIII. The Stone-von Neumann Uniqueness Theorem

Proposition VIII.4:

(i) All operators W (s, t) are unitary and for all real numbers s1, s2, t1 and t2
we have W (s1, t1)W (s2, t2) = W (s1 +s2, t1 + t2)e 1

2 i[s1t2−s2t1]. In particular
it holds W (0, 0) = 1 and W (s, t)∗ = W (−s,−t).

(ii) The map L1(R2) → B(H), h 7→ Wh is injective, i.e. for h ̸= 0, also
Wh ̸= 0.

(iii) For two integrable functions h1, h2 : R2 → C, we define another integrable
function h : R2 → C by

h(s, t) =
¨

e
1
2 [st′−s′t]h1(s− s′, t− t′)h2(s′, t′) ds′ dt′ .

For those functions it holds Wh1Wh2 = Wh.

Proof: The statements (i) and (iii) can be shown with simple calculations.
For (ii), assume Wh = 0. Then for all real numbers x and y we have that

W (−x,−y)WhW (x, y) = 0, i.e.

0 = W (−x,−y)
¨

h(s, t)W (s, t) ds dtW (x, y)

=
¨

h(s, t)W (s− x, t− y)e 1
2 i[−xt+ys]W (x, y) ds dt

=
¨

h(s, t)e 1
2 i[(s−x)y−(t−y)x]e

1
2 i[−xt+ys]W (s, t) ds dt

=
¨

h(s, t)ei[sy−tx]W (s, t) ds dt .

Thus for all real numbers x and y and vectors f, g ∈ H, we have

0 =
¨

h(s, t)ei[sy−tx]⟨f,W (s, t)g⟩ ds dt .

This means the Fourier transform of (s, t) 7→ h(s, t)⟨f,W (s, t)g⟩ is zero almost
everywhere and because the Fourier transform is injective this gives that
(s, t) 7→ h(s, t)⟨f,W (s, t)g⟩ is zero almost everywhere for all f, g ∈ H. Hence,
h(s, t)W (s, t)g = 0 almost everywhere for all g ∈ H. Because the W (s, t) are
unitary, for g ∈ H − {0} it holds W (s, t)g ̸= 0, thus finally we can infer that h
is zero almost everywhere. □
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Remark VIII.5: We claim that

P := 1
2π

¨
W (s, t)e− 1

4 (s2+t2) ds dt

which is Wh for h : (s, t) 7→ 1
2πe

−1/4(s2+t2), gives the projection onto the vacuum.
Let us check this for the Schrödinger representation. Recall that there the
vacuum is given by Ω(x) = ( 1

π
)1/4e−x2/2. There we have

(W (s, t)f)(x) = e
1
2 isteitxf(x+ s)

and thus

(Pf)(x) = 1
2π

¨
e

1
2 is+itxf(x+ s)e− 1

4 (s2+t2) ds dt = 1√
π

(ˆ
f(s′)e− 1

2 s
′2
ds′
)
e− 1

2x
2

which shows that Pf = ⟨Ω, f⟩Ω.

Now to the proof of Theorem VIII.1.

Proof: Let h = 1
2πe

−1/4(s2+t2) and put

P := Wh = 1
2π

¨
W (s, t)e− 1

4 (s2+t2) ds dt .

Then P is an orthogonal projection, i.e. P 2 = P = P ∗. The selfadjointness is
easy to see, since

P ∗ = 1
2π

¨
W (s, t)∗e− 1

4 (s2+t2) ds dt = 1
2π

¨
W (−s,−t)e− 1

4 (s2+t2) ds dt = P.

For the projection property, one calculates more generally that for all tuples of
real numbers (x, y) it holds PW (x, y)P = e−1/4(x2+y2)P . This can be checked
by hand using the properties from Proposition VIII.4. This in particular implies
P 2 = P for x = 0 = y.

Since h is non-zero, the operator P = Wh is not the zero operator and
thus PH ̸= {0}. Choose an orthonormal basis (Ωn)1≤n≤N of PH (where
N ∈ N ∪ {∞}) and for 1 ≤ n ≤ N , put Hn := cl(span{W (s, t)Ωn | s, t ∈ R}).
For those spaces, we have the following:

(i) Each Hn is invariant for the W (x, y),
(ii) For n ̸= m, the spaces Hn and Hm are orthogonal,
(iii) The Hilbert space H decomposes into the Hn, i.e. H = ⊕N

n=1 Hn.
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Chapter VIII. The Stone-von Neumann Uniqueness Theorem

(iv) If the representation is irreducible, then N = 1 and H = H1.

Property (i) is clear, since W (x, y)W (s, t)Ωn = ei...W (x + s, y + t)Ωn. For
property (ii), we check that

⟨W (x, y)Ωm,W (s, t)Ωm⟩ = ⟨Ωn, PW (−x,−y)W (s, t)PΩm⟩
= λ⟨Ωn, PΩm⟩ = λ⟨Ωn,Ωm⟩ = λδn,m.

For (iii), let K := ⊕N
n=1 Hn and assume K ⊊ H. Then {W (s, t)}|K⊥ gave a

representation of the Weyl relations and the projection for this were P |K⊥ ,
which weren’t zero. Thus, there were an f ∈ K⊥ − {0} with Pf = f , i.e. f
belonged to K and K⊥, which contradicted K ∩ K⊥ = {0}.

Let now a natural number n be fixed and put Ω := Ωn. For real numbers s
and t, denote fs,t := W (s, t)Ω. Then we have

W (x, y)fs,t = W (x, y)W (s, t)Ω = e
1
2 i[xt−ys]W (x+ s, y + t) = e

1
2 i[xt−ys]fx+s,y+t

and

⟨fx,y, fs,t⟩ = ⟨W (x, y)Ω,W (s, t)Ω⟩
= ⟨Ω, PW (−x,−y)W (s, t)PΩ⟩
= ⟨Ω, P e 1

2 i[−xt+ys]W (s− x, t− y)W (s, t)PΩ⟩
= ⟨Ω, P e 1

2 i[−xt+ys]e− 1
4 [(s−x)2+(t−y)2]PΩ⟩

= e
1
2 i[−xt+ys]e− 1

4 [(s−x)2+(t−y)2]⟨Ω, PΩ⟩ = e
1
2 i[−xt+ys]e− 1

4 [(s−x)2+(t−y)2].

Thus all inner products and actions of the W (x, y) are uniquely determined.
If we have two such representations (Ω,W (s, t),H) and (Ω′,W ′(s, t),H′), then
the mapping fs,t = W (s, t)Ω 7→ W ′(s, t)Ω′ = f ′

s,t extends to a unitary map
which intertwines the action of the W (s, t) and the W ′(s, t). Hence all irre-
ducible representations are equivalent to each other, and to the Schrödinger
representation. □

Remark VIII.6: (i) Theorem VIII.1 and its proof can be generalised to the
case of finitely many degrees n of freedom with the canonical commutation
relations

[Pi, Qj] = −iδij, [Qi, Qj] = 0 = [Pi, Pj],

where 1 ≤ i, j ≤ n. For this situation, we define Uk(t) = eitPk , Vℓ = eisQℓ and
obtain the Weyl relations Uk(t)Uℓ(s) = Uℓ(s)Uk(t), Vk(t)Vℓ(s) = Vℓ(s)Vk(t) and
Uk(t)Vℓ(s) = eiδkℓstVℓ(s)Uk(t). The Schrödinger representation now lives on
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L2(Rn), where Qk corresponds to multiplication with xk and Pℓ corresponds to
taking the partial derivative with respect to xℓ.

Again, each irreducible representation of the Weyl relations is unitarily
equivalent to the Schrödinger representation.

(ii) For an infinite number of freedoms, the proof of Theorem VIII.1 breaks
down and even worse, the statement itself really does not hold anymore.
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Chapter IX.

Symmetric Fock Space and Second
Quantisation

In one degree of freedom, we had the canonical commutation relation [P,Q] =
−i1. For a finite number of freedoms, we had the slightly more involved
relations

[Pi, Qj] = −iδij1, [Pi, Pj] = 0 = [Qi, Qj].

Generalising this to an infinite number of freedoms is not straight foreward.
Instead of the canonical commutation relations, we consider the relations
[ai, a∗

j ] = δij1 and [a∗
i , a

∗
j ] = 0 for the operator ai as defined in (Reference).

Remark IX.1: Our new Hilbert space F should contain a vacuum Ω, one parti-
cle elements f ∈ H, n-particle elements f1 ⊗ · · · ⊗ fn ∈ H⊗n and combinations
of different numbers of particles that should be contained in ⊕

n H⊗n, the
so-called full Fock space over H. Since a∗

i a
∗
j = a∗

ja
∗
i we should consider the

so-called bosonic Fock space or symmetric Fock space, where f ⊗ g = g ⊗ f .

Definition IX.2: Let H1 and H2 be Hilbert spaces and consider their algebraic
tensor product

H1 ⊙ H2 :=
{ n∑
i=1

xi ⊗ yi : n ∈ N, x1, . . . , xn ∈ H1, y1, . . . , yn ∈ H2

}

Then the linear extension of ⟨x1 ⊗ y1, x2 ⊗ y2⟩ := ⟨x1, x2⟩⟨y1, y2⟩ defines an
inner product on H1 ⊗ H2 and we call H1 ⊗ H2 := cl(H1 ⊙ H2) the Hilbert
space tensor product of H1 and H2.

We denote H⊗2 := H ⊗ H. By iteration, this construction extends to finite
numbers of factors H1 ⊗ · · · ⊗ Hn and again, we write H⊗n := ⊗n

i=1 H.
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Chapter IX. Symmetric Fock Space and Second Quantisation

Let now (Hi)i∈N be a sequence of Hilbert spaces. Then
⊕
i∈N

Hi :=
{

(x1, x2, . . . ) : xi ∈ Hi,
∑
i∈N

∥xi∥2 < ∞
}

is called orthogonal direct sum of the Hilbert spaces Hi. Note that the inner
product on ⊕i∈NHi is determined by the requirement that Hi is orthogonal to
Hj for i ̸= j, where x ∈ Hj is identified with (δijx)i∈N.

Remark IX.3: (i) Let H be a Hilbert space of dimension d ∈ N ∪ {+∞}
and assume (ei)1≤i≤d is an orthonormal basis of H. Then

{ei(1) ⊗ · · · ⊗ ei(n) | 1 ≤ i(1), . . . , i(n) ≤ d} ⊆ H⊗n

is an orthonormal basis of the tensor power H⊗n. In particular, the dimension of
the tensor product of Hilbert spaces is multiplicative, i.e. dim H⊗n = (dim H)n.

(ii) Since Hi has a unique zero vector, we can embedd direct sums into each
other. For example, we can identify H1 ⊕ · · · ⊕ Hn and H1 ⊕ · · · ⊕ Hn ⊕ {0},
which is contained in H1 ⊕ · · · ⊕ Hn+1.

The infinite direct sum can be seen as the completion of all finite ones, i.e.

⊕
i∈N

Hi
∼= cl

( ⋃
n∈N

n⊕
i=1

Hi

)
.

However, there is no canonical “unit” in a Hilbert space which would allow for
an canonical embedding of a tensor product of n Hilbert spaces into a tensor
product of n+ 1 Hilbert spaces, and thus there is no canonical infinite tensor
product of Hilbert spaces.

Theorem IX.4: Let H be a Hilbert space.

(i) Let n be a natural number and let σ ∈ Sn be an permutation of {1, . . . , n}.
Then we can uniquely extend

Uσ(x1 ⊗ · · · ⊗ xn) = xσ(1) ⊗ . . . xσ(n)

to a unitary operator U : H⊗n → H⊗n. Furthermore, for all σ, τ ∈ Sn it
holds Uστ = UσUτ and Uid = 1 (where id denotes the identity permutation).
Finally, U∗

σ = Uσ−1.
(ii) The operator Pn := (n!)−1∑

σ∈Sn
Uσ is an orthogonal projection on H⊗n

and projects onto the symmetric tensors, i.e. x belongs to Pn(H⊗n) if and
only if for all σ ∈ Sn it holds Uσx = x.
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Proof: (i) Note that if ∑i x
(i)
1 ⊗ · · · ⊗ x(i)

n = 0, then also for all σ ∈ Sn it
holds ∑i x

(i)
σ(1) ⊗ · · · ⊗ x

(i)
σ(n) = 0. If {e1, . . . , en} is an orthonormal basis of H,

then {ei(1) ⊗ · · · ⊗ ei(n) | 1 ≤ i(1), . . . , i(n) ≤ n} is an orthonormal basis of H⊗n

and for any σ ∈ Sn, the operator Uσ maps this basis onto itself, which shows
the unitarity.

(ii) That Pn is an orthogonal projection is easily checked. Firstly it is
selfadjoint since

P ∗
n = 1

n!
∑
σ∈Sn

U∗
σ = 1

n!
∑
σ∈Sn

Uσ−1 = Pn,

and secondly it is a projection because

P 2
n = 1

n!n!
∑
σ∈Sn

∑
τ∈Sn

UσUτ = 1
n!n!

∑
σ∈Sn

∑
π∈Sn

Uπ = 1
n!n!n!

∑
π∈Sn

Uπ = Pn.

If on the one hand x ∈ H⊗n is given such that for all σ ∈ Sn it holds Uσx = x,
then Pnx = 1

n!
∑
σ∈Sn

Uσx = x.
If on the other hand x ∈ H⊗n is given such that it holds Pnx = x, then for

all σ ∈ Sn we have Uσx = UσPnx = Pnx = x. □

Definition IX.5: Let H be a Hilbert space and for n ∈ N denote by Pn the
projection from Theorem IX.4. The Hilbert space

F+(H) := Fsym(H) :=
∞⊕
n=0

PnH⊗n

is called the symmetric Fock space over H or bosonic Fock space over H. Here
we put P0H⊗0 = H⊗0 = C. We call Ω := (1, 0, 0, . . . ) ∈ F+ the vaccum. We
call H the one-particle space and the tensor power H⊗n

+ := PnH⊗n is called
n-particle space.

Example IX.6: If H = L2(R), then H⊗n ∼= L2(Rn) and the symmetric space
H⊗n

+ can be identified with

{f ∈ L2(Rn) | For all σ ∈ Sn : f(t1, . . . , tn) = f(tσ(1), . . . , tσ(n))}.

Remark IX.7: Let T be a bounded operator on the Hilbert space H. Then we
have a unique operator which is uniquely determined via

T⊗n(x1 ⊗ . . . xn) = (Tx1) ⊗ · · · ⊗ (Txn).
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Chapter IX. Symmetric Fock Space and Second Quantisation

Since for all σ ∈ Sn it holds UσT⊗n = T⊗nUσ we get for all σ ∈ Sn and
x ∈ H⊗n

+ (i.e. Pnx = x) that T⊗nx = T⊗Uσx = UσT
⊗nx, which implies that

P nT⊗nx = T⊗nx. Hence T⊗n(H⊗n
+ ) ⊆ H⊗n

+ and we can put Γn+(T ) := T⊗n|H⊗n
+

.
We note a few properties of Γ+

n :

(i) For the identity operator on H we obtain Γn+(1) = 1.
(ii) The assignment behaves well with adjoints, i.e. Γn+(T )∗ = Γn+(T ∗).
(iii) The assignment fits with compositions, i.e. Γn+(ST ) = Γn+(S)Γn+(T ).
(iv) The norm is controllable, i.e. ∥Γn+(T )∥ = ∥T∥n.

Note that in general Γn+(S + T ) ̸= Γn+(S) + Γn+(T ). Due to property (iv), the
norm of Γ+

n (T ) stays bounded for all n if and only if T is a so-called contraction
(which means ∥T∥ ≤ 1).

Definition IX.8: Let T be a bounded operator on the Hilbert space H with
∥T∥ ≤ 1. Then

Γ+(T ) :=
∞⊕
n=0

Γn+(Γ) ∈ B(F+(H))

is called the symmetric second quantisation of T . An element (x0, x1, . . . ) of
the symmetric Fock space F+(H) is mapped to (Γ0

+x0,Γ1
+(x1), . . . ).

Note that for any bounded operator T on H it holds Γ0
+(T ) = 1 as H⊗0 ∼= C.

Remark IX.9: Let (Ut)t∈R be a unitary group on a Hilbert space H, where
Ut = eiHt. Then (Γn+(Ut))t∈R is a unitary group on H⊗n

+ with generator

dΓn+(H) = H ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗H ⊗ 1 · · · ⊗ 1 + · · · + 1 ⊗ · · · ⊗ 1 ⊗H

and thus Γn+(eiHt) = eidΓn
+(H)t. Now dΓ+(H) = ⊕∞

n=0 dΓn+(H) lives on the
symmetric Fock space and Γ+(eiHt) = eidΓ+(H)t. The operator dΓ+ is called
differential second quantisation of H.

Notation IX.10: For elements x1, . . . , xn of H we put

x1 ◦ · · · ◦ xn :=
√
n!Pn(x1 ⊗ · · · ⊗ xn) ∈ H⊗n

+ .

Remark IX.11: Note the following:

(i) For any permutation σ ∈ Sn it holds x1 ◦ · · · ◦ xn = xσ(1) ◦ · · · ◦ xσ(n).
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(ii) If (ei)i∈I is an orthonormal basis of H, then

{ei(1) ◦ · · · ◦ ei(n) | 1 ≤ i(1) ≤ · · · ≤ i(n) ≤ n} ⊆ H⊗n
+

is an orthogonal basis of H⊗n
+ , but not an orthonormal basis. Indeed:

⟨ei(1) ◦ · · · ◦ ei(n), ej(1) ◦ · · · ◦ ej(n)⟩

= n!
〈 1
n!

∑
σ∈Sn

eσ(i(1)) ⊗ · · · ⊗ eσ(i(n)),
∑
π∈Sn

eπ(j(1)) ⊗ · · · ⊗ eπ(j(n))

〉

= 1
n!

∑
σ,π∈Sn

⟨eσ(i(1)), eπ(j(1))⟩ · · · ⟨eσ(i(n)), eπ(j(n)⟩.

If (i(1), . . . , i(n)) ̸= (j(1), . . . , j(n)) the last sum evaluates to zero and for
(i(1), . . . , i(n)) = (j(1), . . . , j(n)) it evaluates to∑

τ∈Sn

⟨ei(1), eτ(i(1))⟩ . . . ⟨ei(n), eτ(i(n))⟩,

e.g. ⟨e1 ◦ e2 ◦ · · · ◦ en, e1 ◦ e2 ◦ · · · ◦ en⟩ = 1 and ⟨e1 ◦ · · · ◦ e1, e1 ◦ · · · ◦ e1⟩ = n!.

Definition IX.12: Let H be a Hilbert space, let f ∈ H and let

D :=
{ ∞⊕
n=0

f (n) ∈ F+(H) :
∞∑
n=0

n∥f (n)∥2 < ∞
}
.

Then linear extension of

(i) A(f)Ω = 0, A(f)f1 ◦ · · · ◦ fn = ∑n
k=1⟨f, fk⟩f1 ◦ · · · ◦ f̂k ◦ · · · ◦ fn,

(ii) A+(f)Ω = f , A+(f)f1 ◦ · · · ◦ fn = f ◦ f1 ◦ · · · ◦ fn

defines unbounded operators A(f), A+f : D → F+(H), called annihilation
operator repsectively creation operator.

Theorem IX.13: Let H be a Hilbert space and let f ∈ H.

(i) The operators A(f) and A+(f) are closeable and adjoints of each other.
(ii) The operators A(f) and A+(f) leave their domain D invariant, i.e.

A(f)(D) ⊆ D respectively A+(f)(D) ⊆ D.
(iii) On D there hold canonical commutation relations: For all f and g in H

it holds [A(f), A(g)] = 0 = [A+(f), A+(g)] and [A(f), A+(g)] = ⟨f, g⟩1.
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Chapter IX. Symmetric Fock Space and Second Quantisation

Remark IX.14: Let H be a Hilbert space and let (ei)i∈I be an orthonormal
basis of H. Putting Ai := ei, A∗

i := A∗(ei) as well as Qi := 2−1/2(Ai + A∗
i ) and

Pi := −i2−1/2(Ai − A∗
i ), we obtain essentially selfadjoint operators Qi and Pi.

Then we get

[Ai, Aj] = 0 = [A∗
i , A

∗
j ], [Ai, A∗

j ] = δij1,
[Qi, Qj] = 0 = [Pi, Pj], [Pi, Qj] = −iδij1.

If we consider the corresponding unitary groups Uk(t) = eiPkt and Vk(t) = eiQkt

then they satisfy the Weyl relations, more precisely for all natural numbers k
and ℓ it holds

Uk(t)Vℓ(s) = Vℓ(s)Uk(t)eiδkℓst.

For infinite dimensional Hilbert spaces H, i.e. in the case #(I) = ∞, we thus
get a representation of the infinite-dimensional version of the Weyl relations.
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Chapter X.

Infinite Tensor Products of Hilbert
Spaces

Let n be a natural number or infinity. By CCR(n) we denote the canonical
commutation relations for n degrees of freedom.

We are interested in representations of CCR(∞). Let P1, Q1 on H1 and P2,
Q2 on H2 be representations of CCR(1). Then P1 ⊗ 1, Q1 ⊗ 1, 1 ⊗ P2, 1 ⊗Q2
form a representation of CCR(2) on H1 ⊗ H2.

For example, the Schrödinger representation of CCR(n) on L2(Rn) is the
n-fold tensor product of rerpesentations of CCR(1) on L2(R).

We should think that CCR(∞) would be representable as an “infinite tensor
product” of representations of CCR(1) on H.

This approach suffers from the problem that the notion of an infinite tensor
product of Hilbert spaces cannot be canonically defined. Even worse: Different
choices also lead to inequivalent representations.

Let (H)i∈N be a sequence of Hilbert spaces. We want to obtain a Hilbert
space ⊗i∈NHi, i.e. we also need an inner product on this thing. For pure
tensors it is natural to require

⟨x1 ⊗ x2 ⊗ x3 ⊗ . . . , y1 ⊗ y2 ⊗ y3 ⊗ . . . ⟩ =
∏
i∈N

⟨xi, yi⟩ (X.1)

and of course, questions of convergence arise. This leads to the notion of a
complete tensor product respectively an incomplete tensor product. Note that
“incomplete” is not meant in a topological sense. The convergence of the right
hand side in Eq. (X.1) is clear, if ⟨xi, yi⟩ = 1 for large i, i.e. for xi = yi = ei for
some fixed ei ∈ Hi, where ∥ei∥ = 1.

1This definition is due to von Neumann. He coined it in a paper from 1939.
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Definition X.1 (Infinite Tensor Product1): For each i ∈ N let a Hilbert space
Hi and a fixed unit vector ei ∈ Hi be given. Equip

span{(x1, x2, x3, . . . ) | xi ∈ Hi for all i ∈ N and xi = ei almost all i ∈ N}

with the inner product defined in Eq. (X.1) and factor out the zero vectors.
Then the completion of this quotient with respect to the norm induced by the
inner product is denoted ⊗(Hi, ei) and called the incomplete tensor product of
the (Hi, ei).

Remark X.2: Fixing the (ei)i∈N gives us a way of embedding H1 ⊗· · ·⊗Hn into
H1 ⊗ · · · ⊗ Hn+1 via H1 ⊗ · · · ⊗ Hn

∼= H1 ⊗ · · · ⊗ Hn ⊗ en+1 ⊆ H1 ⊗ · · · ⊗ Hn+1
and thus elements x = x1 ⊗ x2 ⊗ · · · ∈ ⊗(Hi, ei) have to be understood as
x = limn→∞ x1 ⊗ · · · ⊗ xn ⊗ en+1 ⊗ en+2 ⊗ . . .

Suppose that for all i ∈ N it holds ∥xi∥ = 1. Then the existence of x as a
limit requires that for ε > 0 we find an index N such that for n,m ≥ N it holds

∥x1 ⊗ · · · ⊗ xn ⊗ en+1 ⊗ · · · − x1 ⊗ · · · ⊗ xm ⊗ em+1 ⊗ . . . ∥< ε,

but

∥x1 ⊗ · · · ⊗ xn ⊗ en+1 ⊗ · · · − x1 ⊗ · · · ⊗ xm ⊗ em+1 ⊗ . . . ∥
= ∥x1 ⊗ · · · ⊗ xn ⊗ (−xn+1 ⊗ · · · ⊗ xm + en+1 ⊗ · · · ⊗ em) ⊗ em+1 ⊗ . . . ∥
= ∥en+1 ⊗ · · · ⊗ em − xn+1 ⊗ · · · ⊗ xm∥

= 1 + 1 −
m∏

k=n+1
⟨ek, xk⟩ −

m∏
k=n+1

⟨xk, ek⟩.

Thus the right condition to ensure that x1 ⊗ x2 ⊗ . . . (where the xi are unit
vectors) belongs to ⊗(Hi, ei) is that ∑∞

k=1|⟨ek, xk⟩ − 1| < ∞.

Theorem X.3 (von Neumann): For each natural number i let a Hilbert space
Hi be given. For two sequences of unit vectors (ei)i∈N and (fi)i∈N the following
are equivalent:

(i) ⊗i∈N(Hi, ei) can be identified with ⊗i∈N(Hi, fi), i.e. there is a unitary
U : ⊗i∈N(Hi, ei) → (Hi, fi) such that for all n ∈ N the following diagram
commutes:

H1 ⊗ · · · ⊗ Hn

⊗
i∈N(Hi, ei)

⊗
i∈N(Hi, fi)U
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where the vertical maps are the canonical embeddings given by

x1 ⊗ · · · ⊗ xn 7−→ x1 ⊗ · · · ⊗ xn ⊗ en+1 ⊗ . . .

x1 ⊗ · · · ⊗ xn 7−→ x1 ⊗ · · · ⊗ xn ⊗ fn+1 ⊗ . . .

(ii) The series ∑i∈N|⟨ei, fi⟩ − 1| is summable.

We only give a sketch of the proof. For “(ii) =⇒ (i)”, we consider the
following example: Let e = e1 ⊗ e2 ⊗ · · · ∈ ⊗

i∈N(Hi, ei). This element has to
appear as

Ue = lim
n→∞

e1 ⊗ · · · ⊗ en ⊗ fn+1 ⊗ · · · ⊗ fn+2 ⊗ · · · ∈
⊗
i∈N

(Hi, fi).

That this limit exists is, by Remark X.2, ensured by ∑∞
i=1|⟨ei, fi⟩ − 1| < ∞.

For “(i) =⇒ (ii)” we work by so-called “superselection rules”.

Example X.4 (Inequivalent Representations of the CCR(∞)): Consider the
Schrödinger representation of CCR(1) in the form H = L2(R) with [a, a∗] = 1,
aΩ = 0 and ψn := (n!)−1a∗nΩ (in the notation of 7.4 those are the fn but we
change the name to avoid confusion with the notation from above). We now
want to realise CCR(∞) as an infinite tensor product of this representation of
CCR(1), but as stated before there are choices to be made.

For every natural number i we take Hi = H and ei := ψn ∈ Hi = H for
a fixed n ∈ N. Then we put Kn := ⊗

i∈N(Hi, ei) = ⊗
i∈N(H, ψn) and we can

realise CCR(∞) on Kn via ai := 1 ⊗ · · · ⊗ 1 ⊗ a⊗ 1 ⊗ . . . , where a sits at the
i-th position.

We claim: For n ̸= m, the representations on Kn respectively Km are not
equivalent. Our Fock space representations corresponds to the representation
on K0.

Consider for CCR(1) the “number operator” a∗a. Then, by definition,
a∗aψn = a∗(

√
nψn−1) = nψn.

For our representation of CCR(∞) on Kn we consider the number operator
Ni := a∗

i ai on Hi and define

N = lim
k→∞

1
k

k∑
i=1

Ni,

which we call the averaged total number operator. Note that the limit does not
exist algebraically in CCR(∞), but converges in each representation. On Kn
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we have for elements x of the form x = ψn1 ⊗ ψn2 ⊗ · · · ⊗ ψnℓ
⊗ ψn ⊗ ψn ⊗ . . .

and for those we have

Nx = lim
k→∞

1
k

(n1 + n2 + · · · + nℓ + n+ n+ · · · + n) = nx

This goes over to sums and limits, thus for all x ∈ Kn we have Nx = nx. If
the representations of CCR(∞) on Kn and Km were unitarily equivalent, i.e.
if there were a unitary U : Kn → Km such that aiKn = U∗ai

KmU , then we also
had Ni

Kn = U∗Ki
KmU which forced NKn = U∗NKmU , but then for all x ∈ Kn

it needed to hold

nx = NKnx = U∗NKmUx = U∗mUx = mx

and thus n = m.

Conclusion X.5: A physical system corresponds to an C∗-algebra of observables
generated by the respective algebraic relations (e.g. Weyl relations), but
different physical situations corresponds to different representations. This
approach is associated to some famous names like Segal (1947) or Haag, Kastler
(1964).
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Chapter XI.

The CCR Algebra

Let H be a Hilbert space and let F+(H) be the corresponding bosonic Fock
space. For f ∈ H, we have a creation operator A+(f) and an annihilation
operator A(f) on F+(H). The operator ϕ(f) := 2−1/2(A+(f) + A(f)) is then
an essentially selfadjoint operator. We have seen that it is more convenient to
pass over to the unitary groups generated by these operators. For this operator
ϕ(f) let thus W (f) := eiϕ(f). Note that the mapping f 7→ A+(f) is linear and
the mapping f 7→ A(f) is anti-linear and thus

ϕ(if) = 1√
2

(A+(if) + A(if)) = 1√
2

i(A+(f) − A(f)).

The Weyl operators W (f) satisfy the following relations, called Weyl relations,
• W (0) = id.
• For each f ∈ H, the operator W (f) is unitary.
• The adjoint of W (f) is W (−f).
• For f, g ∈ H it holds W (f)W (g) = e−i/2 Im⟨f,g⟩W (f + g).

Often, Im⟨f, g⟩ is denoted σ(f, g). This is a symplectic form, i.e. it holds
σ(f, g) = −σ(g, f).
Theorem XI.1: Let H be a Hilbert space, and assume that we have operators
(W (f))f∈H on a Hilbert space K1 and (W ′(f))f∈H on a Hilbert space K2 such
that both the operator W (f) and W ′(f) satisfy the Weyl relations listed above.
Then the generated C∗-algebras

W = cl∥·∥({algebra generated by all W (f), f ∈ H}) ⊆ B(K1)

and analogously W ′ ⊆ B(K2) are ∗-isomorphic such that for all f ∈ H it holds
W (f) 7→ W ′(f). In particular, this means that the norms of operators are
determined by the algebraic relations.
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Proof: The algebra W consists of limits of elements W = ∑
f∈H αfW (f) and

elements of W ′ are of the form W ′ = ∑
f∈H αfW

′(f) – here, in both cases we
mean linear combinations, i.e. finite sums.

To have control when passing over to limits, we need estimates of the shape
|af | ≤ C∥∑g∈I αgW (g)∥, where f belongs to a finite index set I ⊆ H and C is
some constant. It suffices to consider the case |α0| ≤ ∥α01 +∑

f ̸=0 αfW (f)∥.
The following curical fact will prove useful in what follows: Conjugation

by unitary operators doesn’t change the operator norm, i.e. for all bounded
operators A we have ∥W (g)AW (g)∗∥ = ∥A∥.

For conjugations of the form W (g)W (f)W (g)∗ we get

W (g)W (f)W (g)∗ = e−1/2σ(g,f)W (g + f)W (−g)
= e−1/2σ(f,g)e−1/2σ(g+f,−g)W (f) = e−σ(g,f)W (f).

For f = 0, the occurring phase factor will always be one and for f ̸= 0, we can
always make the phase factor to be different from one.

We now want to show that for f ̸= 0 it holds |α0| ≤ ∥α01 + αW (f)∥. Note
that for any g ∈ H it holds

∥α01 + αW (f)∥ = ∥W (g)[α01 + αW (f)]W (g∗)∥
= ∥α01 + αe−iσ(f,g)W (f)∥ = ∥α01 + αe−itW (f)∥

for some t ∈ R and any real number t can arise through appropriate choice of
g. Thus we have for all t ∈ R and 0 ̸= f ∈ H that

∥α01 + αW (f)∥ = ∥α01 + e−itαW (f)∥.

Hence for all 0 ̸= f ∈ H and α ∈ C we have the estimate

∥α01∥ =
∥∥∥∥α01 + 1

2π

ˆ 2π

0
e−it dt αW (f)

∥∥∥∥
=
∥∥∥∥ 1

2π

ˆ 2π

0
[α01 + e−itαW (f)] dt

∥∥∥∥
≤ 1

2π

ˆ t

0
∥α01 + e−itαW (f)∥ dt = ∥α01 + αW (f)∥.

The general case now follows by induction. □

Definition XI.2: The C∗-algebra which is uniquely determined by the Weyl
relations listed above is called the CCR algebra over H or, more precisely, CCR
C∗-algebra over H, usually denoted CCR(H).
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For a general symplectic space (H, σ), i.e. a real Hilbert space H and a
symplectic form σ, one can more generally define CCR(H, σ).

Remark XI.3: Theorem XI.1 implies in particular that CCR(H) is a simple C∗-
algebra and that a linear mapping T : H → H which preserves the symplectic
structure. i.e. for all f, g ∈ H it holds σ(Tf, Tg) = σ(f, g), can be implemented
as a ∗-automorphism of CCR(H), that is there is a unique ∗-automorphism
γT : CCR(H) → CCR(H) such that for all f ∈ H it holds γT (W (f)) = W (Tf).

The second assertion can be seen by putting W ′(f) := W (Tf) for f ∈ H.
Then the proof of Theorem XI.1 yields the claim. In physics, such maps T are
often given by symmetries of the system or time evolution.

In general, in representations of CCR(H), such automorphisms γT don’t need
to be unitarily implementable.

Definition XI.4:

(i) Let A be a (unital) complex algebra with an involution x 7→ x∗ and a norm
∥·∥. If A is complete with respect to ∥·∥, if the norm is submultiplicative,
i.e. for all x, y ∈ A it holds ∥xy∥ ≤ ∥x∥∥y∥ and if for x ∈ A it holds
∥xx∗∥ = ∥x∥2, then A is called a (unital) C∗-algebra.

(ii) Let A be a C∗-algebra. If ω : A → C is linear such that ω(1) = 1 and
such that for all x ∈ A it holds ω(xx∗) ≥ 0, then ω is called a state on A.

(iii) Let A be a C∗-algebra and let H be a Hilbert space. A ∗-homomorphism
π : A → B(H) such that π(1) = 1 is called a ∗-representation of A.

Theorem XI.5 (GNS Construction): Let A be a C∗-algebra and let ω : A → C

be a state. Then there is a representation of A on a Hilbert space H and a unit
vector Ω ∈ H such that for all x ∈ A it holds ω(x) = ⟨Ω, π(x)Ω⟩.

In the name “GNS construction”, the “G” stands for the mathematician
Gelfand, the “N” stands of the mathematician Naimark and the “S” stands
for Segal. Gelfand and Naimark gave a first version of this statement in 1943,
Segal gave a more general version in 1947.

The usual quantum mechanical description takes place on a Hilbert space
H. Observables correspond to selfadjoint operators T on H and a quantum
mechanical system corresponds to a unit vector ψ ∈ H. The relevant quantity
for this setup is ωψ(T ) = ⟨ψ, Tψ⟩, which gives the average measurement T in
the quantum mechanical system ψ. Functions of T can be dealt with using
functional calculus.

Time evolutions or symmetries of quantum mechanical systems are described
by unitary operators U : H → H either by ψ 7→ Uψ—this approach is called
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Schroedinger picture—or by T 7→ U∗TU—this approach is called the Heisenberg
picture. Because we have

ωUψ(T ) = ⟨Uψ, TUψ⟩ = ⟨ψ,U∗TUψ⟩ = ωψ(U∗TU)

both approaches describe the same physics. The GNS construction allows us to
pass over to the more classical situation, given a state corresponding to some
physical system.

However, in the Schrödinger picture the mapping ψ 7→ Uψ only makes
sense if we stay in a a given Hilbert space, whereas T 7→ U∗TU can also be
generalised to ∗-automorphisms on the C∗-algebraic level, which does not need
to be unitarily implementable.

Hence a more appropriate picture is the C∗-algebraic Heisenberg picture,
where observables correspond to selfadjoint elements of a C∗-algebra A, and
the concrete physical system corresponds to a state on this C∗-algebra A.

Automorphisms on A can then be rewritten as mappings on state spaces,
but the corresponding representations do not need to be unitarily equivalent.
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Appendix A.

Lebesgue-Stieltjes Integral and
Absolute Continuity

We want to integrate functions on R against finite measures µ, that is we want
to make sense of expressions of the form

´
f(t) dµ(t).

On the real numbers, a finite measure µ can be encoded by its distribution
function h, which is defined via h(t) := µ((−∞, t]), and then we write dh(t)
instead of dµ(t). Integrals of the form

´
f(t) dh(t) are called Stieltjes integrals.

Definition A.1 (Distribution Function): Let h : R → R be a function. If h is
increasing, right-continuous with limt→−∞ h(t) = 0 and limt→+∞ h(t) < ∞,
then h is called a distribution function.

In the following, by h we always denote a distribution function.

Theorem A.2: Let f be a continuous and bounded function f : R → R. Then
the limit ˆ

f(t) dh(t) := lim
sup|ti+1−ti|↓0

∑
f(ti)[h(ti+1) − h(ti)]

exists and is called Riemann-Stieltjes integral of f with respect to dh.

Definition A.3 (Measurable Functions): The measurable functions from the
reals to the reals are the smallest class of functions, which contains the contin-
uous functions, and which is closed under pointwise convergence.

Remark A.4: Any “concretely constructed” function is measurable. To obtain
a non-measurable function, one has to employ the axiom of choice.

The definition of the Riemann-Stieltjes integral can be extended to measurable
functions:
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Definition A.5: Let f : R → R be a function. If f is measurable and f is
non-negative almost everywhere, then

´
f(t) dh(t) ∈ [0,∞] is always defined

and is called the Lebesgue-Stieltjes integral.
Let f : R → C be a measurable function. If

´
|f(t)| dh(t) is finite, then f is

called integrable. The set

L1(R, dh) := {f : R → C measurable | f is integrable}

is called the L1-space of R with respect to dh. More generally, for 1 ≤ p ≤ ∞,
the set

Lp(R, dh) :=
{
f : R → C measurable :

ˆ
|f(p)|p dh(t) < ∞

}
is called Lp-space of R with respect to dh.

Remark A.6: (i) For a function f ∈ L1(R, dh), the integral
´
f(t) dh(t),

which yields a complex number, is well-defined and one has the usual triangular
inequality ∣∣∣∣∣

ˆ
f(t) dh(t)

∣∣∣∣∣ ≤
ˆ

|f(t)| dh(t) .

(ii) The L2-space is a Hilbert space with inner product

⟨f, g⟩ :=
ˆ
f(t)∗g(t) dh(t) .

Theorem A.7 (Beppo-Levi-Theorem): Let (fn)n∈N be a sequence of real-valued,
non-negative, measurable functions which is pointwise non-decreasing, i.e.
for all t ∈ R it holds 0 ≤ f1(t) ≤ f2(t) ≤ . . . Define f : R → R via
f(t) := limn→∞ fn(t) ∈ [0,∞]. Then we haveˆ

f(t) dh(t) = lim
n→∞

ˆ
fn(t) dh(t)

with possibly ∞ = ∞.

The Beppo-Levi-Theorem is often also called “Monotone Convergence Theo-
rem”.
Theorem A.8 (Dominated Convergence Theorem): Let (fn)n∈N be a point-
wise convergent sequence of measurable functions and let f be the pointwise
limit, i.e. f(t) := limn→∞ f(t). If there is a function g ∈ L1(R, dh) such that
for every t ∈ R and n ∈ N it holds |fn(t)| ≤ g(t), then also f is integrable and
we have ˆ

f(t) dh(t) = lim
n→∞

ˆ
fn(t) dh(t) .
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Definition A.9: Let N ⊆ R be a set. If for each ε > 0 there are countably
many intervals ([si, ti])i∈N such that N ⊆ ⋃

i∈N[si, ti] and ∑
i∈N|ti − si| < ε,

then N is called a null set or set of measure zero with respect to the Lebesgue
measure.

Let P be a property of real numbers. If {t ∈ R | P does not hold for t} is a
nullset, then P is said to hold almost everywhere.

Remark A.10: (i) In particular saying “f = g almost everywhere” means
that {t ∈ R | f(t) ̸= g(t)} has measure zero.

(ii) All countable sets are nullsets with respect to the Lebesgue measure, but
there also are uncountable nullsets like the Cantor set.

Remark A.11: An increasing, right-continuous function h : R → R that also
fulfils limt→−∞ h(t) = 0 and limt→+∞ h(t) < ∞ can always be uniquely decom-
posed as h = hp + hc, where hp is piecewise constant, also called the atomic
point measure, and hc is continuous.

For hp = ∑
i χ[ti,ti+1)αi+1 the corresponding integral of a function f is given

by ˆ
f(t) dhp(t) =

∑
i

f(ti)[αi+1 − αi].

For a continuous function hc one might hope to have dhc(t) = h′
c(t) dt and this

would reduce our integral
´
f(t) dhc(t) to an “ordinary calculus integral”
ˆ
f(t)h′

c(t) dt

with respect to the Lebesgue measure. If we want
´
f(t) dhc(t) =

´
f(t)h′

c(t) dt,
then we need that h′

c must be defined—at least almost everywhere with respect
to the Lebesgue measure—and for f = χ[a,b) we need

hc(b) − hc(a) =
ˆ b

a

dhc(t)

=
ˆ
f(t) dhc(t) =

ˆ
f(t)h′

c(t) dt =
ˆ b

a

h′
c(t) dt

to be true, i.e. we needed an analogue of the Fundamental Theorem of Calculus
for hc.

That hc is almost everywhere differentiable is ensured by a theorem of
Lebesgue on increasing functions. However, we need stronger continuity condi-
tions for hc to have an analogue of the Fundamental Theorem of Calculus.
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Definition A.12 (Absolute Continuity): Let g : [a, b] → C be a function. If for
any ε > 0 there is δ > 0 such that for disjoint subintervals [s1, tn], . . . , [sn, tn]
of [a, b] with ∑n

i=1|ti − si| < δ it holds ∑n
i=1|g(ti) − g(si)| < ε, then g is called

absolutely continuous.

Remark A.13: (i) It is clear that absolute continuity implies uniform conti-
nuity, which is the same as continuity on compact sets.

(ii) There are continuous functions which are not absolutely continuous. For
example the Cantor function (also called “devil’s staircase”) is such a function.
It is a so-called singular function, i.e. it is continuous, non-constant and its
derivative is zero almost everywhere (in the measure theoretic sense). Hence
the Cantor function can not be recovered from its derivative by integrating, in
contrast to what we are used to from the Fundamental Theorem of Calculus.

Theorem A.14 (Fundamental Theorem of Calculus):

(i) Let f be Lebesgue-integrable on the interval [a, b] and declare the function
g : [a, b] → R via

g(t) :=
ˆ t

a

f(s) ds .

Then g is absolutely continuous and it holds g′(t) = f(t) almost every-
where.

(ii) Let g : [a, b] → C be absolutely continuous. Then g is differentiable almost
everywhere, its derivative g′ is Lesbesgue-integrable on [a, b] and

g(t) = g(a) +
ˆ t

a

g′(s) ds .

Remark A.15: Now we can refine our decomposition from Remark A.11: Every
function h as in Definition A.1 can be uniquely decomposed as

h = hp + hac + hs

where hp is called the atomic part, hac is the absolutely continuous part and hs
is the singular part. The gives a decomposition of the integral

ˆ
f dh =

ˆ
f dhp +

ˆ
f dhac +

ˆ
f dhs

of which we know that
´
f dhp is a series and

´
f dhac =

´
fh′

ac dt is an integral
we can process by means of calculus.
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