
Exercises 4

For a selfadjoint operator T on H, with spectral resolution E of the identity, and
for any unit vector x ∈ H we put

µT,x := 〈x,E(·)x〉.
This “spectral measure” is a probability measure on σ(T ) ⊂ R, which gives the
probability distribution for a measurement of the observable T in the pure state x
of the system.

A pure state x corresponds to absolute knowledge about the system. It could
also be that one does not have such absolute knowledge, but only statistical in-
formation that the system is with probability pk (k = 1, . . . , r) in the pure state
xk, where x1, . . . , xr is an orthonormal system (i.e., unit vectors which are pairwise
orthogonal), and where 0 ≤ pk ≤ 1,

∑r
k=1 pk = 1 Then the probability distribution

for a measurement of T in such a general state is given by

µT,(pk),(xk) :=

r∑
k=1

pkµT,xk

.
1) Let A be a selfadjoint operator on Cn (i.e., a selfajoint matrix) and let

x1, . . . , xn be an orthonormal basis of eigenvectors of A with Axi = λixi. Let
x be a pure state (i.e., unit vector) with x =

∑n
i=1 αixi. Determine the spectral

measure µA,x.
2) Consider again the finite dimensional situation H = Cn and let y1, . . . , yn be

an orthonormal basis of H. Then we can consider the state that all yi have the
same probability pi = 1/n (i.e., we have no idea in which pure state the system is),
thus

µA =

n∑
i=1

1

n
µA,yi .

Does µA depend on the choice of the orthonormal basis (yi)
n
i=1? Calculate µA for

a selfadjoint matrix A. Which information about A is relevant for this?
3) The spectral theorem allows us to define for a selfadjoint operator T =∫
λdE(λ) its exponential (for fixed t ∈ R)

eitT =

∫
eitλdE(λ).

This should agree (in nice cases and appropriate sense) with the definition via power
series

eitT =

∞∑
n=0

(it)nTn

n!
.

Calculate the latter expansion for the derivation operator T = i ddt on L2(R) by

applying it to smooth (i.e., infinitely often differentiable) L2 functions.
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And here is, just for fun and general education, a quotation from John Baez:
“Beware: physicists often say self-adjoint when they mean symmetric. This is a

result of insufficient education and the following facts:
1) ‘sufficiently nice’ symmetric operators are self-adjoint, and
2) it’s much easier to check if an operator is symmetric than if its self-adjoint

- in other words, it can be very difficult to show that a symmetric operator is
‘sufficiently nice’.

To check that an operator T is symmetric one must show that 〈φ, Tψ〉 = 〈Tφ, ψ〉
for every φ, ψ ∈ D(T ); this is often easy to do, and if T is a differential operator
it usually amounts to integration by parts. To check that T is self-adjoint one
must also show that if φ ∈ H has a φ′ ∈ H such that 〈φ, Tψ〉 = 〈φ′, ψ〉, then
φ lies in D(T ). This is usually done indirectly using various theorems, some of
which we will discuss later, and many problems in mathematical physics consist
of proving that symmetric operators are self-adjoint. This is because the spectral
theorem only holds for self-adjoint operators, so self-adjoint operators are much
better than merely symmetric operators. We also note term ‘hermitian’ is also used
by mathematicians to mean symmetric, and by physicists to mean self-adjoint, by
which they mean symmetric ... we will avoid this term.”
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