Exercises 7

Problem 1: In the Schrödinger representation the operator $P = W_h$ (the clash of notation with the momentum operator is really a bit unfortunate, but hopefully not too confusing) is acting as

$$(Pf)(x) = \frac{1}{2\pi} \int e^{\frac{1}{2}ist} e^{itx} f(x+s) e^{-\frac{1}{4}(s^2+t^2)} ds dt.$$

In class I claimed that this is indeed the projection onto the vacuum, i.e.,

$$Pf = \langle \Omega, f \rangle \Omega$$
, where $\Omega(x) = \frac{1}{\pi^{1/4}} e^{-x^2/2}$.

Show that this is true.

Problem 2: We will address here Heisenberg's uncertainty principle. For a selfadjoint operator T and a unit vector $\psi \in D(T^2)$ we define the *standard deviation* of T in the state ψ by

$$\Delta(T) := \left(\langle \psi, T^2 \psi \rangle - \langle \psi, T \psi \rangle^2 \right)^{1/2}.$$

(Usually the dependency of $\Delta(T)$ on ψ is supressed in the notation.) This $\Delta(T)$ is the standard deviation of the probability distribution for the measurment of the observable T in the state ψ .

(i) Prove the following Uncertainty Principle: Let A and B be self-adjoint operators, and suppose

$$\psi \in D(A^2) \cap D(B^2) \cap D(AB) \cap D(BA)$$

is a unit vector. Then

$$\Delta(A)\Delta(B) \ge \frac{1}{2} |\langle \psi, [A, B]\psi \rangle|.$$

(ii) What does this give for the momentum and position operator in the Schrödinger representation? Find a vector ψ in this representation such that equality is attained.

Problem 3: Show the following corollary of the Stone-von Neumann uniqueness theorem: Let (U_t, V_s) be a represention of the Weyl relations on a separable Hilbert space \mathcal{H} . Let P be the generator of U_t , and Q the generator of V_s . Then there is a dense domain $D \subset \mathcal{H}$ so that

- (a) $P: D \to D, Q: D \to D$
- (b) $PQ\psi QP\psi = -i\psi$ for all $\psi \in D$
- (c) P and Q are essentially selfafjoint on D.