EXERCISES 8

Problem 1: Let $T \in B(\mathcal{H})$ be a bounded operator and

$$\Gamma(T) = \bigoplus_{n=0}^{\infty} \Gamma^n_+(T)$$

its second quantization on the symmetric Fock space

$$\mathcal{F}(\mathcal{H}) = \bigoplus_{n=0}^{\infty} \mathcal{H}_{+}^{\otimes n}$$

(i) Prove that

$$\|\Gamma_+^n(T)\| = \|T\| \quad \text{for all } n \ge 1.$$

(ii) Let T = U be a unitary operator on \mathcal{H} . What can you then say about

 $\Gamma_+(U)A(f)\Gamma_+(U)^*$ and $\Gamma_+(U)A^+(f)\Gamma_(U)^*$,

where A(f) and $A^+(f)$ are the annihilation and creations operators, respectively, for $f \in \mathcal{H}$.

Problem 2: Let P_1, Q_1 be a representation of CCR on \mathcal{H}_1 and let P_2, Q_2 be a representation of CCR on \mathcal{H}_2 . Check that then

$$P_1 \otimes 1, Q_1 \otimes 1, 1 \otimes P_2, 1 \otimes Q_2 \quad \text{on } \mathcal{H}_1 \otimes \mathcal{H}_2$$

provide a representation of the CRR for two degrees of freedom. Do this formally for the momentum and position operators, and also more rigorous for the corresponding Weyl relations.

Problem 3:

(i) On the symmetric Fock space $\mathcal{F}_+(\mathcal{H})$ consider, for $f \in \mathcal{H}$, the unbounded selfadjoint operator $Q(f) := A(f) + A^+(f)$. As we know any vector of norm 1 induces a probability measure for a selfadjoint operator. What is this probability measure for Q(f) for the vacuum vector

(ii) Consider now two such operators Q(f) and Q(g) for which $\langle f, g \rangle = 0$. Then Q(f) and Q(g) commute and according to the extension of the spectral theorem to commuting operators there is now a probability measure on \mathbb{R}^2 for the collection (Q(f), Q(g)) with respect to the vacuum vector. Describe this probability measure.

[For this spectral theorem for collections see page 13 of the lecture notes of John Baez; we had some small exchange on this in a teams discussion. This version is for the bounded case, but should also be true for nice unbounded cases, as we can assume here. More concretely, we are looking here for a probability measure in \mathbb{R}^2 which has the same moments as our two operators have with respect to $\langle \Omega, \cdot \Omega \rangle$.]

 $\mathbf{2}$