SAARLAND UNIVERSITY Faculty of Mathematics and Computer Science Mathematics Department Prof. Dr. Roland Speicher Prof. Dr. Moritz Weber M.Sc. Luca Junk

Operator Algebras Summer term 2022

Problem set 10 To be submitted by Monday, June 20, 2 pm.

Let H be a complex Hilbert space.

- **Problem 34** (4+4* points). (a) Let $M_1 = L^{\infty}([0,1],\lambda)$ and $M_2 = L^{\infty}([7,13],\lambda)$ (where λ denotes the respective restrictions of the Lebesgue measure). Show that M_1 and M_2 are *-isomorphic.
 - (b) Now let $L^{\infty}(X_1, \mu_1)$ and $L^{\infty}(X_2, \mu_2)$ be two L^{∞} -spaces such that the underlying measures μ_1, μ_2 have no atoms (meaning that no singleton set $\{x\}$ has positive measure) and the corresponding L^2 -spaces are separable. Show that $L^{\infty}(X_1, \mu_1)$ and $L^{\infty}(X_2, \mu_2)$ are *-isomorphic.
 - (c) Let $M_1 = L^{\infty}([0,1], \lambda)$ and let $M_3 = L^{\infty}([0,1], \nu)$ where

$$\nu = \frac{1}{2}(\lambda + \delta_0)$$

is a measure with an atom of mass 1/2. Show that M_1 and M_3 are not *-isomorphic.

(d) *Bonus exercise: Consider now discrete measures. Which properties (number of atoms, their locations, their masses, etc.) determine whether such two L^{∞} -spaces are *-isomorphic? Can you give a complete classification of abelian von Neumann algebras acting on separable Hilbert spaces?

Problem 35 (4 points). Let $M \subseteq B(H)$ be a von Neumann algebra such that 1 is a finite projection. Prove the following statements:

- (a) Every projection $e \in M$ is finite.
- (b) If $e \sim f$ then $1 e \sim 1 f$ for projections $e, f \in M$.
- (c) If $e \sim f$ then there exists a unitary $u \in M$ such that $f = ueu^*$.
- (d) The statements (b) and (c) are false if M is a von Neumann algebra where 1 is not finite.

Problem 36 (4+4* points). Let $M \subseteq B(H)$ be a von Neumann algebra and let $p \in M$ be a projection. Show the following:

- (a) Both $pMp \subseteq B(pH)$ and $pM'p \subseteq B(pH)$ are von Neumann algebras.
- (b) If M is a factor, then also pMp is a factor. *Hint:* Proof by contradiction. First argue using functional calculus that there exists a projection f in the center of pMp which is not a scalar multiple of the identity. Then deduce that fM(p - f) = 0 - a contradiction.
- (c) *Bonus exercise: If M is a factor of type I, II or III, then pMp is a factor of the same type.