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Problem 37 (4 points). Reflect on the details of the characterization of type I factors:
Let M ⊆ B(H) be a type I factor and let e ∈ M be a minimal projection. By division
with remainder, we may find a family (ei)i∈I of pairwise orthogonal projections in M
such that each ei is Murray-von Neumann equivalent to e and

∑
i∈I ei = 1. Let ti be

the corresponding partial isometries with t∗i ti = ei and tit
∗
i = e. Put H1 := ℓ2(I) and

H2 := eH. Show that the isomorphism between H and H1⊗̂H2 induces an isomorphism
between M ⊆ B(H) and B(H1)⊗ 1 ⊆ B(H1⊗̂H2) where x ∈ M is mapped to x1 ⊗ 1 and
x1 ∈ B(ℓ2(I)) is a matrix with coefficients (λij)i,j∈I satisfying t∗jxti = λijt

∗
j ti.

Problem 38 (4+4* points). Consider the symmetric group S3 (which has 6 elements).
What is the dimension of the associated group von Neumann algebra L(S3)? How else
can L(S3) be written? Consider also L(S4).
*Bonus question: What role do the irreducible representations of S3 (respectively S4)
play?

Problem 39 (4 points). Let L(Z) be the left group von Neumann algebra of the discrete
group (Z,+).

(a) Show that L(Z) is an abelian von Neumann algebra.

(b) Prove that L(Z) is ∗-isomorphic to L∞(T,m) where T := {z ∈ C | |z| = 1} denotes
the unit circle and m the arc length measure on T. Furthermore, show that the
tracial state τ : L(Z) → C, x 7→ ⟨xδ0, δ0⟩ corresponds under this isomorphism to
the linear functional on L∞(T,m) that is given by f 7→

∫
T f(ζ)dm(ζ).

Please turn the page.



Problem 40 (8 points). Consider the chain of inclusions

M2(C) ↪→ M22(C) ↪→ M23(C) ↪→ . . . ↪→ M2n(C) ↪→ M2n+1(C) ↪→ . . .

given by

ιn : M2n(C) ↪→ M2n+1(C)

x 7→
(
x 0
0 x

)
(a) Justify that the union A :=

⋃∞
n=1 M2n(C) is a complex unital ∗-algebra and show

that there exists a (well-defined!) linear functional τ0 : A → C such that τ0(x) =
tr2n(x) holds for every x ∈ M2n(C), where tr2n denotes the normalized trace on
M2n(C). Deduce that τ0 is unital, positive, faithful and tracial.

(b) Denote by H the Hilbert space which is obtained by completion of A with respect
to the inner product given by ⟨x, y⟩ = τ0(xy

∗). Prove that each y ∈ A induces a
bounded linear operator on H, i.e. we can view A as a subalgebra of B(H).

(c) Consider the von Neumann algebra R := A′′ ⊆ B(H). Show that there exists a
unique faithful normal tracial state τ on R.

(d) Prove that R ⊆ B(H) is a factor of type II1.
Hint: The center Z(R) = R ∩R′ is generated by its positive elements. So as soon
as we have shown that any positive z ∈ Z(R) is a positive multiple of 1, it follows
that R is a factor. For doing so, use the result obtained in (c).


