SAARLAND UNIVERSITY Faculty of Mathematics and Computer Science Mathematics Department Prof. Dr. Roland Speicher Prof. Dr. Moritz Weber M.Sc. Luca Junk

Operator Algebras Summer term 2022

Problem set 12 To be submitted by Monday, July 4, 2 pm.

- **Problem 41** (4 points). (a) Let $M \subseteq B(H)$ be a von Neumann algebra that has a faithful tracial state $\tau : M \to \mathbb{C}$ which is moreover normal. Show that M is finite. Is this still the case if τ is not required to be normal?
 - (b) Let $M \subseteq B(H)$ be factor and let $\tau : M \to \mathbb{C}$ be a faithful tracial state. Consider any two projections $e, f \in M$. Show that $e \sim f$ if and only if $\tau(e) = \tau(f)$.

Problem 42 (4 points). Let M be a factor of type II₁ and let $\tau : M \to \mathbb{C}$ be its unique faithful normal tracial state. Show that

$$\tau(\mathcal{P}(M)) = [0, 1].$$

Hint: Fix and $t \in [0, 1]$ and consider the set $S_t := \{p \in \mathcal{P}(M) \mid \tau(p) \leq t\}$. Verify that S_t is partially ordered and use Zorn's lemma to prove that S_t contains a maximal element p_t . Finally show that $\tau(p_t) = t$.

Problem 43 (4 points). Let $M \subseteq B(H)$ be type II₁ factor with its unique faithful normal tracial state $\tau : M \to \mathbb{C}$. Suppose that M possesses a cyclic and separating vector $\Omega \in H$ such that $\tau(x) = \langle x\Omega, \Omega \rangle$ for all $x \in M$. Let $J : M\Omega \to M\Omega$ be defined by $J(x\Omega) = x^*\Omega$ for all $x \in M$. Prove the following statements:

- (a) The antilinear operator $J: M\Omega \to M\Omega$ extends uniquely to an antilinear isometry $J: H \to H$ that satisfies $J^2 = 1$ and $\langle J\xi, \eta \rangle = \langle J\eta, \xi \rangle$ for all $\xi, \eta \in H$; we call J the canonical conjugation operator on H.
- (b) For all $x, y \in M$ is holds true that $JxJ(y\Omega) = yx^*\Omega$.
- (c) For every $x \in M'$, we have that $Jx\Omega = x^*\Omega$.

Deduce that JMJ = M' and show that also M' is a type II₁ factor. How does the unique faithful tracial state on M' look like?

Hint: For proving JMJ = M', switch the roles of M and M'. What does (c) tell us about this case?