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Problem 44 (4 points). We consider the universal C∗-algebras

C∗(p, 1 | p is a projection, i.e. p = p2 = p∗)

C∗(s, 1 | s is a symmetry, i.e. s∗s = ss∗ = 1, s = s∗).

(Here we consider 1 as a generator with the relations 1 = 1∗ = 12 and 1x = x1 = x for
every other generator x.)

(a) Show that these C∗-algebras are isomorphic by writing down an explicit isomor-
phism. To do so, find a symmetry s′ ∈ C∗(p, 1) and a projection p′ ∈ C∗(s, 1) and
use the universal property twice. (It might help to solve (a) and (b) at the same
time.)

(b) How does the spectrum of a projection and the spectrum of a symmetry look like?
Since the C∗-algebras above are commutative, they are isomorphic to the algebra of
continuous functions on the spectrum, i.e.

C∗(p, 1) ∼= C(sp(p)), C∗(s, 1) ∼= C(sp(s))

What are images of idsp(p) and idsp(s) under the isomorphism between C∗(p, 1) and
C∗(s, 1)?

Problem 45 (4 points). Show that the following C∗-algebras are isomorphic.

• C({1, . . . , n})

• Cn = C⊕ · · · ⊕ C

• C∗(p1, . . . , pn, 1 | pi are projections,
∑n

i=1 pi = 1)

• C∗(u, 1 | u∗u = uu∗ = 1, un = 1)

Please turn the page.



Problem 46 (8 points). Let H be a complex Hilbert space with orthonormal basis (en)n∈N
and let H̃ be a complex Hilbert space with orthonormal basis (ẽn)n∈Z. For λ ∈ S1 ⊆ C
we define shift and diagonal operators via

S : H → H, S̃ : H̃ → H̃, d(λ) : H → H, d̃(λ) : H̃ → H̃

en 7→ en+1 ẽn 7→ ẽn+1 en 7→ λnen ẽn 7→ λnẽn

Prove the following assertions.

(a) S is an isometry (i.e. S∗S = 1), such that 1 − SS∗ is the projection onto the one-
dimensional subspace Ce1 ⊆ H, while S̃, d(λ), d̃(λ) are unitaries with

d(λ)∗ = d(λ), d(λ)d(λ′) = d(λλ′), d̃(λ)∗ = d̃(λ), d̃(λ)d̃(λ′) = d̃(λλ′).

(b) It holds that d(λ)S = λSd(λ) and d̃(λ)S̃ = λS̃d̃(λ), and more generally

d̃(λ)kS̃l = λklS̃ld̃(λ)k, k, l ∈ Z.

Conclude that the set S of finite linear combinations of d̃(λ)kS̃l is a dense ∗-
subalgebra of C∗(S̃, d̃(λ)) ⊆ B(H̃).

(c) The maps

βλ : B(H) → B(H), β̃λ : B(H̃) → B(H̃)

T 7→ d(λ)Td(λ)∗, T 7→ d̃(λ)T d̃(λ)∗

are ∗-isomorphisms with βλ(C
∗(S)) = C∗(S) and β̃λ(C

∗(S̃)) = C∗(S̃).

(d) Use (c) to show that sp(S̃) = S1 and sp(σ(S)) = S1, where σ : B(H) → B(H)/K(H)
is the quotient map.


