SAARLAND UNIVERSITY Faculty of Mathematics and Computer Science Mathematics Department Prof. Dr. Roland Speicher Prof. Dr. Moritz Weber M.Sc. Luca Junk

Operator Algebras Summer term 2022

Problem set 13 To be submitted by Monday, July 11, 2 pm.

Problem 44 (4 points). We consider the universal C^* -algebras

 $C^{*}(p, 1 \mid p \text{ is a projection, i.e. } p = p^{2} = p^{*})$ $C^{*}(s, 1 \mid s \text{ is a symmetry, i.e. } s^{*}s = ss^{*} = 1, \ s = s^{*}).$

(Here we consider 1 as a generator with the relations $1 = 1^* = 1^2$ and 1x = x1 = x for every other generator x.)

- (a) Show that these C^* -algebras are isomorphic by writing down an explicit isomorphism. To do so, find a symmetry $s' \in C^*(p, 1)$ and a projection $p' \in C^*(s, 1)$ and use the universal property twice. (It might help to solve (a) and (b) at the same time.)
- (b) How does the spectrum of a projection and the spectrum of a symmetry look like? Since the C^* -algebras above are commutative, they are isomorphic to the algebra of continuous functions on the spectrum, i.e.

 $C^*(p,1) \cong C(\operatorname{sp}(p)), \qquad C^*(s,1) \cong C(\operatorname{sp}(s))$

What are images of $id_{sp(p)}$ and $id_{sp(s)}$ under the isomorphism between $C^*(p, 1)$ and $C^*(s, 1)$?

Problem 45 (4 points). Show that the following C^* -algebras are isomorphic.

- $C(\{1, ..., n\})$
- $\mathbb{C}^n = \mathbb{C} \oplus \cdots \oplus \mathbb{C}$
- $C^*(p_1, \ldots, p_n, 1 \mid p_i \text{ are projections}, \sum_{i=1}^n p_i = 1)$
- $C^*(u,1 \mid u^*u = uu^* = 1, u^n = 1)$

Please turn the page.

Problem 46 (8 points). Let H be a complex Hilbert space with orthonormal basis $(e_n)_{n \in \mathbb{N}}$ and let \tilde{H} be a complex Hilbert space with orthonormal basis $(\tilde{e}_n)_{n \in \mathbb{Z}}$. For $\lambda \in S^1 \subseteq \mathbb{C}$ we define shift and diagonal operators via

 $\begin{array}{lll} S:H\to H, & \tilde{S}:\tilde{H}\to\tilde{H}, \\ e_n\mapsto e_{n+1} & \tilde{e}_n\mapsto \tilde{e}_{n+1} \end{array} & \begin{array}{lll} d(\lambda):H\to H, \\ e_n\mapsto \lambda^n e_n \end{array} & \begin{array}{lll} \tilde{d}(\lambda):\tilde{H}\to\tilde{H} \\ \tilde{e}_n\mapsto \lambda^n \tilde{e}_n \end{array}$

Prove the following assertions.

(a) S is an isometry (i.e. $S^*S = 1$), such that $1 - SS^*$ is the projection onto the onedimensional subspace $\mathbb{C}e_1 \subseteq H$, while $\tilde{S}, d(\lambda), \tilde{d}(\lambda)$ are unitaries with

$$d(\lambda)^* = d(\bar{\lambda}), \quad d(\lambda)d(\lambda') = d(\lambda\lambda'), \quad \tilde{d}(\lambda)^* = \tilde{d}(\bar{\lambda}), \quad \tilde{d}(\lambda)\tilde{d}(\lambda') = \tilde{d}(\lambda\lambda').$$

(b) It holds that $d(\lambda)S = \lambda S d(\lambda)$ and $\tilde{d}(\lambda)\tilde{S} = \lambda \tilde{S}\tilde{d}(\lambda)$, and more generally

$$\tilde{d}(\lambda)^k \tilde{S}^l = \lambda^{kl} \tilde{S}^l \tilde{d}(\lambda)^k, \qquad k, l \in \mathbb{Z}.$$

Conclude that the set S of finite linear combinations of $\tilde{d}(\lambda)^k \tilde{S}^l$ is a dense *subalgebra of $C^*(\tilde{S}, \tilde{d}(\lambda)) \subseteq B(\tilde{H})$.

(c) The maps

are *-isomorphisms with $\beta_{\lambda}(C^*(S)) = C^*(S)$ and $\tilde{\beta}_{\lambda}(C^*(\tilde{S})) = C^*(\tilde{S})$.

(d) Use (c) to show that $\operatorname{sp}(\tilde{S}) = S^1$ and $\operatorname{sp}(\sigma(S)) = S^1$, where $\sigma : B(H) \to B(H)/\mathcal{K}(H)$ is the quotient map.