SAARLAND UNIVERSITY Faculty of Mathematics and Computer Science Mathematics Department Prof. Dr. Roland Speicher Prof. Dr. Moritz Weber

Operator Algebras Summer term 2022

Problem set 14 This sheet is entirely optional.

Problem 47. For $\zeta \in S^1 \subseteq \mathbb{C}$ and $n \in \mathbb{N}$ we define:

$$a_n(\zeta) \coloneqq \frac{1}{2n+1} \sum_{j=-n}^n \zeta^j$$

Let $\vartheta \in \mathbb{R}$ and put $\lambda := e^{2\pi i \vartheta} \in S^1$. Let $l \in \mathbb{Z}$.

- (a) Show that $(a_n(\zeta))_{n\in\mathbb{N}}$ converges to 0 if $\zeta \neq 1$. *Hint:* Show that $\sum_{j=-n}^{n} \zeta^j$ is bounded using geometric series.
- (b) Let $\vartheta \notin \mathbb{Q}$. Show that $(a_n(\lambda^l))_{n \in \mathbb{N}}$ converges to 1 if l = 0 and to 0 otherwise.
- (c) Let $\vartheta = \frac{p}{q} \in \mathbb{Q}$ with gcd(p,q) = 1. Show that $(a_n(\lambda^l))_{n \in \mathbb{N}}$ converges to 1 if $l \in q\mathbb{Z}$ and to 0 otherwise. In particular, $(a_n(\lambda^l))_{n \in \mathbb{N}}$ converges to 1 for infinitely many powers λ^l , $l \in \mathbb{Z}$. Hence, in the rational case, the map $x \mapsto \lim_{n \to \infty} \frac{1}{2n+1} \sum_{j=-n}^n u^j x u^{-j}$ is very different from φ_1 .

Problem 48. Let $\vartheta = \frac{p}{q} \in \mathbb{Q}$.

M.Sc. Luca Junk

- (a) Find a representation $\pi : A_{\vartheta} \to M_q(\mathbb{C})$.
- (b) Find unital C^* -algebras B and D as well as unital *-homomorphisms $\varphi : A_{\vartheta} \to B$ and $\psi : A_{\vartheta} \to D$ such that $\varphi(v^q) = 1$ and $\psi(v^q) \neq 1$.
- (c) Conclude that A_{ϑ} is not simple.
- (d) Show that there is a *-homomorphism $\sigma : C(S^1 \times S^1) \to C^*(u^q, v^q) \subseteq A_\vartheta$ which maps the generators \tilde{u} and \tilde{v} of $C(S^1 \times S^1)$ to u^q and v^q . (In fact, this is a *-isomorphism.)
- (e) Convince yourself, that none of these statements is true for A_{ϑ} with $\vartheta \notin \mathbb{Q}$.

Please turn the page.

Problem 49. Let $S_1, \ldots, S_n \in \mathcal{O}_n$ be the standard generators of the Cuntz algebra.

- (a) Let $p_1, \ldots, p_n \in A$ be projections in a C^* -algebra A such that $\sum_{i=1}^n p_i = 1$. Show that $p_i p_j = 0$ whenever $i \neq j$. From this deduce that $(S_i S_i^*)(S_j S_j^*) = 0$ for $i \neq j$ and thus $S_i^* S_j = \delta_{ij}$. *Hint:* Use the fact that $\sum_{i,i\neq j} p_j p_i p_j = 0$ is a sum of positive elements.
- (b) Let μ, ν be multi-indices. Show:

If
$$|\mu| = |\nu|$$
, then $S^*_{\mu}S_{\nu} = \delta_{\mu\nu}$
If $|\mu| < |\nu|$, then $S^*_{\mu}S_{\nu} = \begin{cases} S_{\nu'} & \text{if } \nu = \mu\nu' \\ 0 & \text{otherwise} \end{cases}$
If $|\mu| > |\nu|$, then $S^*_{\mu}S_{\nu} = \begin{cases} S_{\mu'} & \text{if } \mu = \nu\mu' \\ 0 & \text{otherwise} \end{cases}$

Conclude that all monomials in \mathcal{O}_n are of the form $S_{\mu}S_{\nu}^*$ for multi-indices μ, ν .

- (c) Let $k \in \mathbb{N}$ and denote by $\mathcal{M}(k)$ the set of all multi-indices of length k. Show that $\sum_{\alpha \in \mathcal{M}(k)} S_{\alpha} S_{\alpha}^* = 1.$
- (d) Let μ, ν be multi-indices with $|\mu| \neq |\nu|$ and $|\mu|, |\nu| \leq k$. Let $\alpha, \beta \in \mathcal{M}(k)$. Put $S_{\gamma} \coloneqq S_1^{2k} S_2$. Show that $S_{\gamma}^* S_{\alpha}^* (S_{\mu} S_{\nu}^*) S_{\beta} S_{\gamma} = 0$.

Problem 50. For $n \in \mathbb{N}$ consider the extended Cuntz algebra

$$\mathcal{E}_n \coloneqq C^*(S_1, \dots, S_n \mid S_i^* S_j = \delta_{ij}).$$

- (a) Show that $p \coloneqq 1 \sum_{i=1}^{n} S_i S_i^* \in \mathcal{E}_n$ is a projection.
- (b) Let μ, ν be multi-indices. Show that the elements $f_{\mu\nu} \coloneqq S_{\mu}pS_{\nu}^*$ fulfill the relations $f_{\mu\nu}^* = f_{\nu\mu}$ and $f_{\mu\nu}f_{\mu'\nu'} = \delta_{\nu\mu'}f_{\mu\nu'}$.
- (c) Show that there is a short exact sequence of the form

$$0 \longrightarrow \mathcal{K}(H) \longrightarrow \mathcal{E}_n \longrightarrow \mathcal{O}_n \longrightarrow 0$$

(*H* being a separable Hilbert space). How does this sequence look like for n = 1?

(d) Find a representation of \mathcal{E}_n which is not a representation of \mathcal{O}_n .

One defines $\mathcal{O}_{\infty} \coloneqq \mathcal{E}_{\infty}$ (why does the definition of \mathcal{O}_n only make sense for $n < \infty$?). It can be shown that \mathcal{O}_{∞} is also purely infinite, which is false for \mathcal{E}_n with $n < \infty$ (why?).