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Problem 47. For ζ ∈ S1 ⊆ C and n ∈ N we define:

an(ζ) :=
1

2n+ 1

n∑
j=−n

ζj

Let ϑ ∈ R and put λ := e2πiϑ ∈ S1. Let l ∈ Z.

(a) Show that (an(ζ))n∈N converges to 0 if ζ ̸= 1.
Hint: Show that

∑n
j=−n ζ

j is bounded using geometric series.

(b) Let ϑ /∈ Q. Show that (an(λ
l))n∈N converges to 1 if l = 0 and to 0 otherwise.

(c) Let ϑ = p
q
∈ Q with gcd(p, q) = 1. Show that (an(λl))n∈N converges to 1 if l ∈ qZ and

to 0 otherwise. In particular, (an(λl))n∈N converges to 1 for infinitely many powers
λl, l ∈ Z. Hence, in the rational case, the map x 7→ limn→∞

1
2n+1

∑n
j=−n u

jxu−j is
very different from φ1.

Problem 48. Let ϑ = p
q
∈ Q.

(a) Find a representation π : Aϑ →Mq(C).

(b) Find unital C∗-algebras B and D as well as unital ∗-homomorphisms φ : Aϑ → B
and ψ : Aϑ → D such that φ(vq) = 1 and ψ(vq) ̸= 1.

(c) Conclude that Aϑ is not simple.

(d) Show that there is a ∗-homomorphism σ : C(S1×S1) → C∗(uq, vq) ⊆ Aϑ which maps
the generators ũ and ṽ of C(S1×S1) to uq and vq. (In fact, this is a ∗-isomorphism.)

(e) Convince yourself, that none of these statements is true for Aϑ with ϑ /∈ Q.

Please turn the page.



Problem 49. Let S1, . . . , Sn ∈ On be the standard generators of the Cuntz algebra.

(a) Let p1, . . . , pn ∈ A be projections in a C∗-algebra A such that
∑n

i=1 pi = 1. Show
that pipj = 0 whenever i ̸= j. From this deduce that (SiS

∗
i )(SjS

∗
j ) = 0 for i ̸= j and

thus S∗
i Sj = δij.

Hint: Use the fact that
∑

i,i ̸=j pjpipj = 0 is a sum of positive elements.

(b) Let µ, ν be multi-indices. Show:

If |µ| = |ν|, then S∗
µSν = δµν

If |µ| < |ν|, then S∗
µSν =

{
Sν′ if ν = µν ′

0 otherwise

If |µ| > |ν|, then S∗
µSν =

{
Sµ′ if µ = νµ′

0 otherwise

Conclude that all monomials in On are of the form SµS
∗
ν for multi-indices µ, ν.

(c) Let k ∈ N and denote by M(k) the set of all multi-indices of length k. Show that∑
α∈M(k) SαS

∗
α = 1.

(d) Let µ, ν be multi-indices with |µ| ≠ |ν| and |µ|, |ν| ≤ k. Let α, β ∈ M(k). Put
Sγ := S2k

1 S2. Show that S∗
γS

∗
α(SµS

∗
ν)SβSγ = 0.

Problem 50. For n ∈ N consider the extended Cuntz algebra

En := C∗(S1, . . . , Sn | S∗
i Sj = δij).

(a) Show that p := 1−
∑n

i=1 SiS
∗
i ∈ En is a projection.

(b) Let µ, ν be multi-indices. Show that the elements fµν := SµpS
∗
ν fulfill the relations

f ∗
µν = fνµ and fµνfµ′ν′ = δνµ′fµν′ .

(c) Show that there is a short exact sequence of the form

0 −→ K(H) −→ En −→ On −→ 0

(H being a separable Hilbert space). How does this sequence look like for n = 1?

(d) Find a representation of En which is not a representation of On.

One defines O∞ := E∞ (why does the definition of On only make sense for n < ∞?). It
can be shown that O∞ is also purely infinite, which is false for En with n <∞ (why?).


