SAARLAND UNIVERSITY
 Faculty of Mathematics and Computer Science
 Mathematics Department
 Prof. Dr. Roland Speicher
 Prof. Dr. Moritz Weber
 M.Sc. Luca Junk

Operator Algebras

Summer term 2022

Problem set 1
To be submitted by Monday, April 18, 2022, 2 pm.

In the following, $0 \notin \mathbb{N}$.
Problem 1 (4 points). For any set X an orthonormal basis of the complex Hilbert space $\ell^{2}(X)$ of square-summable \mathbb{C}-valued X-indexed families (with addition and multiplication with scalars from \mathbb{C} explained pointwise) is given by $\left(e_{x}\right)_{x \in X}$, where for each $x \in X$, by definition, $e_{x}: X \rightarrow \mathbb{C}, x^{\prime} \mapsto \delta_{x, x^{\prime}}$. See also Example 1.35.
(a) In the case $X=\mathbb{N}$ there exists a unique bounded linear operator S on $\ell^{2}(\mathbb{N})$, the unilateral shift, with the property that $S e_{n}=e_{n+1}$ for each $n \in \mathbb{N}$.
(i) Prove that the adjoint operator S^{*} of S satisfies $S^{*} e_{n}=e_{n-1}$ for all $n \in \mathbb{N}$ with $2 \leq n$ as well as $S^{*} e_{1}=0$.
(ii) Deduce that S is an isometric but not a unitary operator on $\ell^{2}(\mathbb{N})$, i.e., that $S^{*} S=\mathrm{id}$ but $S S^{*} \neq \mathrm{id}$.
(b) For $X=\mathbb{Z}$ the bilateral shift is the unique bounded linear operator \tilde{S} on $\ell^{2}(\mathbb{Z})$ with the property that $\tilde{S} e_{n}=e_{n+1}$ for each $n \in \mathbb{Z}$. Decide, with proof, whether \tilde{S} is a unitary operator.
(c) Propose a reasonable analog of the bilateral shift \tilde{S} in the case $X=\{1, \ldots, N\}$, where $N \in \mathbb{N}$.

Problem 2 (4 points). Prove the following statements about the unilateral shift S from Problem 1 (a)
(a) The element $\lambda \mathrm{id}-S$ is invertible in $B\left(\ell^{2}(\mathbb{N})\right)$ for any $\lambda \in \mathbb{C}$ with $1<|\lambda|$.
(b) The point spectrum of S over $\ell^{2}(\mathbb{N})$ is empty.
(c) Each $\lambda \in \mathbb{C}$ with $|\lambda|<1$ is an eigenvalue of S^{*} over $\ell^{2}(\mathbb{N})$.
(d) The spectrum of S in $B\left(\ell^{2}(\mathbb{N})\right)$ is given by $\{\lambda \in \mathbb{C}||\lambda| \leq 1\}$.

Given any complex Hilbert space H, any bounded linear operator V on H is called a partial isometry in $B(H)$ if and only if $V V^{*} V=V$, where V^{*} denotes the Hilbert adjoint of V.

Moreover, recall from Definition 1.33 that any bounded linear operator P on H is called a projection in $B(H)$ if and only if $P P=P$ and $P=P^{*}$.

Problem 3 (4 points). Let V be any bounded linear operator on any complex Hilbert space H. Prove that the following statements about V are equivalent:
(1) V is a partial isometry in $B(H)$.
(2) $V^{*} V$ is a projection in $B(H)$.
(3) $V V^{*}$ is a projection in $B(H)$.
(4) There exists a Hilbert subspace (i.e., a closed \mathbb{C}-linear subspace) K of H such that $\langle V x, V y\rangle=\langle x, y\rangle$ for all $\{x, y\} \subseteq K$ and such that $V z=0$ for any $z \in K^{\perp}$, where $\langle\cdot, \cdot\rangle$ denotes the scalar product of H and $(\cdot)^{\perp}$ orthogonal complementation with respect to $\langle\cdot, \cdot\rangle$.

Any C^{*}-algebra A is called simple if and only if it has no proper ideals, i.e., if $I=\{0\}$ or $I=A$ for any closed two-sided ideal I of A.

Problem 4 (4 points). Let $N \in \mathbb{N}$ be arbitrary, let $M_{N}(\mathbb{C})$ denote the C^{*}-algebra of $N \times N$-matrices with complex coefficients (and with addition and \mathbb{C}-scalar multiplication explained entrywise and with matrix multiplication as product), and for any pair (i, j) of indices from $\{1, \ldots, N\}$ let $E_{i, j}$ be the element of $M_{N}(\mathbb{C})$ whose $\left(i^{\prime}, j^{\prime}\right)$-entry is given by $\delta_{i, i^{\prime}} \delta_{j, j^{\prime}}$ for any pair $\left(i^{\prime}, j^{\prime}\right)$ of indices from $\{1, \ldots, N\}$, the matrix (i, j)-unit.
(a) For any closed two-sided ideal I of $M_{N}(\mathbb{C})$ prove the following:
(i) For any pair $\left(i_{0}, j_{0}\right)$ of indices from $\{1, \ldots, N\}$, if there exists an element $T=$ $\left(t_{i, j}\right)_{i, j=1}^{N}$ of I with $t_{i_{0}, j_{0}} \neq 0$, then I already contains $E_{i_{0}, j_{0}}$. Hint: Multiply T with appropriate matrix units to see this.
(ii) If there exists a pair $\left(i_{0}, j_{0}\right)$ of indices from $\{1, \ldots, N\}$ such that I contains $E_{i_{0}, j_{0}}$, then $E_{i, j}$ is an element of I for any pair (i, j) of indices from $\{1, \ldots, N\}$.
(b) Deduce that $M_{N}(\mathbb{C})$ is simple.

Hint: Note that $\sum_{i=1}^{N} E_{i, i}=\mathrm{id}$.

