SAARLAND UNIVERSITY Faculty of Mathematics and Computer Science Mathematics Department Prof. Dr. Roland Speicher Prof. Dr. Moritz Weber M.Sc. Luca Junk

Operator Algebras Summer term 2022

Problem set 2

To be submitted by Monday, April 25, 2022, 2 pm.

Recall that for any compact Hausdorff space X the \mathbb{C} -valued continuous functions on X form a Banach-*-algebra C(X) if equipped with the supremum norm $\|\cdot\|_{\infty}$ and the pointwise-defined addition, multiplication and involution.

- **Problem 5** (4 points). (a) For any compact Hausdorff space X prove that C(X) is a commutative unital C^* -algebra.
 - (b) Show that for any two compact Hausdorff spaces X and Y and any continuous mapping $h : X \to Y$, the map $\alpha_h : C(Y) \to C(X)$ defined by $f \mapsto f \circ h$ is a *-homomorphism.
 - (c) Prove that in the situation of (b), if h is a homeomorphism, the map α_h is an isometric *-isomorphism.

If $\mathbb{D} \coloneqq \{z \in \mathbb{C} \mid |z| < 1\}$ denotes the open unit disk and $\overline{\mathbb{D}} = \{z \in \mathbb{C} \mid |z| \le 1\}$ its closure, then the set

 $A(\mathbb{D}) \coloneqq \{f : \overline{\mathbb{D}} \to \mathbb{C} \mid f \text{ is continuous on } \overline{\mathbb{D}} \text{ and holomorphic on } \mathbb{D}\}\$

with pointwise addition and multiplication forms a unital Banach-*-algebra when equipped with the supremum-norm and the involution $f^*(z) \coloneqq \overline{f(\overline{z})}$, but it is not a C^* -algebra. This can be seen as follows.

Problem 6 (4 points). Show that the identity function on $\overline{\mathbb{D}}$ is a self-adjoint element of $A(\mathbb{D})$ which has spectrum $\overline{\mathbb{D}}$ with respect to $A(\mathbb{D})$.

Problem 7 (8 points). Let A be a non-unital C^* -algebra. A double centralizer of A is a pair (L, R) of linear maps $L, R : A \to A$ satisfying L(ab) = L(a)b, R(ab) = aR(b) and aL(b) = R(a)b for all $a, b \in A$. The multiplier algebra M(A) of A is defined as

 $M(A) \coloneqq \{(L, R) \text{ double centralizer of } A\}$

with the operations

$$(L_1, R_1) + (L_2, R_2) \coloneqq (L_1 + L_2, R_1 + R_2)$$
$$(L_1, R_1) * (L_2, R_2) \coloneqq (L_1 L_2, R_2 R_1)$$
$$(L, R)^* \coloneqq (R^*, L^*)$$
$$\lambda(L, R) \coloneqq (\lambda L, \lambda R)$$

for $\lambda \in \mathbb{C}$ and $(L, R), (L_1, R_1), (L_2, R_2) \in M(A)$. (Note, that for a linear map $T : A \to A$, the map $T^* : A \to A$ is defined as $T^*(x) := (T(x^*))^*$.) We define a norm on M(A) via

$$||(L,R)|| := ||L|| = ||R||$$

for $(L, R) \in M(A)$.

(a) Show that M(A) is a unital C^{*}-algebra and that the map

$$\varphi: A \to M(A)$$
$$a \mapsto (L_a, R_a)$$

where $L_a(x) = ax$ and $R_a(x) = xa$ for $x \in A$ is an isometric *-homomorphism. Furthermore prove that $\varphi(A)$ is an ideal in M(A). Thus every non-unital C*-algebra can be embedded as an ideal in a unital C*-algebra.

(b) Prove that M(A) is the largest unitization of A: If B is a unital C^* -algebra and $A \subseteq B$ as an ideal, then there exists a *-homomorphism from B to M(A) which extends the embedding $A \subseteq M(A)$.