SAARLAND UNIVERSITY Faculty of Mathematics and Computer Science Mathematics Department Prof. Dr. Roland Speicher Prof. Dr. Moritz Weber

Operator Algebras

Summer term 2022

Problem set 3

To be submitted by Monday, May 2, 2 pm.

Problem 9 (6 Points). Prove in the following steps that the mapping $t \mapsto \text{ev}_t$ with $\text{ev}_t : C([0,1]) \to \mathbb{C}, f \mapsto f(t)$ defines a homeomorphism Ψ between [0,1] (with the usual topology) and Spec(C([0,1])).

- (a) Verify that ev_t is an element of Spec(C([0, 1])) for every $t \in [0, 1]$.
- (b) Show that Ψ is injective. *Hint:* Consider the function $t \mapsto |s - t|$ for any fixed $s \in [0, 1]$.
- (c) Show that C([0,1]) is the unique closed ideal I of C([0,1]) with the property that for every $t \in [0,1]$ there exists some $f \in I$ with $f(t) \neq 0$.

Hint: Conclude from the compactness of [0, 1] that I contains an invertible element. (d) Show that the image of [0, 1] under Ψ is all of Spec(C([0, 1])).

- *Hint:* Using (c), find for every $\varphi \in \text{Spec}(C([0, 1]))$ some $t \in [0, 1]$ with $\ker(\varphi) = \ker(\operatorname{ev}_t)$.
- (e) Show that Ψ is continuous.

M.Sc. Luca Junk

(f) Show that also the inverse of Ψ is continuous. *Hint:* Use the Hausdorff property of Spec(C([0, 1])).

Problem 10 (4 Points). Let A be a unital C^* -algebra, let $x \in A$ be normal and $f \in C(\operatorname{sp}(x))$. We denote by f(x) the value of f under the continuous functional calculus of x.

(a) Show that

$$\operatorname{sp}(f(x)) = f(\operatorname{sp}(x)).$$

(b) Let $g \in C(sp(f(x)))$ and denote by g(f(x)) the value of g under the continuous functional calculus of f(x). Show that

$$g(f(x)) = (g \circ f)(x).$$

Hint: Use the uniqueness property of the functional calculus.

Problem 11 (6 Points). Let A be a unital C^* -algebra.

(a) Show that for every invertible $x \in A$ we have

$$\operatorname{sp}(x^{-1}) = \{\lambda^{-1} \,|\, \lambda \in \operatorname{sp}(x)\}.$$

(b) Show that the spectrum of a unitary $u \in A$ is contained in the unit circle of \mathbb{C} , i.e.

$$\operatorname{sp}(u) \subseteq \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}.$$

Hint: Show ||u|| = 1 and use (a).

(c) Show that every unitary $u \in A$ with $\operatorname{sp}(u) \neq \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}$ can be written in *polar coordinates*, i.e. there exists a selfadjoint element $y \in A$ such that

$$u = e^{iy},$$

where the right hand side of this equation is to be interpreted using the continuous functional calculus.