SAARLAND UNIVERSITY Faculty of Mathematics and Computer Science Mathematics Department Prof. Dr. Roland Speicher Prof. Dr. Moritz Weber

Operator Algebras

Summer term 2022

Problem set 4

To be submitted by Monday, May 9, 2 pm.

Problem 12 (6 points). Let A be a unital C^* -algebra and $x \in A$ be selfadjoint. Prove the following statements.

- (a) The element x is invertible if and only if $0 \notin \operatorname{sp}(x)$.
- (b) If x is invertible, then x^{-1} is selfadjoint.

M.Sc. Luca Junk

- (c) If $\operatorname{sp}(x) \subseteq (0, \infty)$, then $\operatorname{sp}(x^{-1}) \subseteq (0, \infty)$.
- (d) If $f, g \in C(sp(x))$, then f(x) and g(x) commute.
- (e) We have $\operatorname{sp}(x-1) \subseteq [0,\infty)$ if and only if $\operatorname{sp}(x) \subseteq [1,\infty)$.
- (f) If $\operatorname{sp}(x) \subseteq [1, \infty)$, then $\operatorname{sp}(1 x^{-1}) \subseteq [0, \infty)$.

Problem 13 (6 points). Let H be a complex hilbert space and $T \in B(H)$.

- (a) Show that there is a unique decomposition T = VP where $V \in B(H)$ is a partial isometry and $P \in B(H)$ is positive such that $\ker(V) = \ker(P) = \ker(T)$. *Hint:* Take $P := |T| := \sqrt{T^*T}$ and $V := V_0 \oplus 0$ where $V_0 : \operatorname{ran}(|T|) \to \operatorname{ran}(T)$, $Px \mapsto Tx$. In particular, justify that these expressions are well-defined and make sense. For the uniqueness statement, first prove that P is unique.
- (b) Show that V is unitary whenever T is invertible.
- (c) How does the decomposition T = VP look like in the case $H = \mathbb{C}$?

Problem 14 (4 points). Let *H* be a complex hilbert space and $T \in B(H)$. Prove the following statements.

- (a) T = 0 if and only if $\langle Tx, x \rangle = 0$ for all $x \in H$.
- (b) $T = T^*$ if and only if $\langle Tx, x \rangle \in \mathbb{R}$ for all $x \in H$.
- (c) $T \ge 0$ if and only if $\langle Tx, x \rangle \ge 0$ for all $x \in H$.

Hint: Show that for every $\lambda < 0$, the operator $\lambda 1 - T$ is bounded from below, i.e. there exists a constant c > 0 such that $\|(\lambda 1 - T)x\| \ge c\|x\|$ for all $x \in H$.