SAARLAND UNIVERSITY Faculty of Mathematics and Computer Science Mathematics Department Prof. Dr. Roland Speicher Prof. Dr. Moritz Weber

M.Sc. Luca Junk

Operator Algebras Summer term 2022

Problem set 5 To be submitted by Monday, May 16, 2 pm.

Problem 15 (4 points). Let A be a C^* -algebra and let $x, y \in A$. Show that

 $\operatorname{sp}(xy) \cup \{0\} = \operatorname{sp}(yx) \cup \{0\}$

and provide an example where sp(xy) and sp(yx) do not coincide.

- **Problem 16** (4 points). (a) Show that the following holds in any commutative (not necessarily unital) C^* -algebra A: If $h \in A$ is positive and $x \in A$ is selfadjoint with $h \ge x$, then also $h \ge x_+$.
 - (b) Find a counterexample to the above statement in $A = M_2(\mathbb{C})$.

Problem 17 (4 points). Let A be a (not necessarily unital) C*-algebra, I a closed ideal in A and $a, b \in I$ positive with ||a|| < 1 and ||b|| < 1. Show that there exists a positive element $c \in I$ with ||c|| < 1 and $a \leq c$ as well as $b \leq c$.

One way to do this is to follow these steps:

- (a) Prove that the expressions $a' \coloneqq a(1-a)^{-1}$ and $b' \coloneqq b(1-b)^{-1}$ make sense and that they define positive elements in I.
- (b) Do the same with $c \coloneqq c'(1+c')^{-1}$ for $c' \coloneqq a'+b'$ and show that ||c|| < 1.
- (c) Give meaning to the expression $1 (1 + x')^{-1}$ for x = a, b, c and show that $1 (1 + x')^{-1} \le 1 (1 + c')^{-1}$ for x = a, b.
- (d) Give meaning to the expression $x'(1+x')^{-1}$ and show that $x = x'(1+x')^{-1}$ for x = a, b.
- **Problem 18** (4 points). (a) Let B, C, D be C^* -algebras and let $\phi : B \to C, \psi : C \to D$ be *-homomorphisms. Prove the following: If the sequence

$$0 \longrightarrow B \xrightarrow{\phi} C \xrightarrow{\psi} D \longrightarrow 0$$

is exact, then

- (i) ϕ is injective,
- (ii) ψ is surjective,
- (iii) $\phi(B)$ is a closed ideal in C,
- (iv) ψ induces a *-isomorphism $C/\phi(B) \to D$ via $c + \phi(B) \mapsto \psi(c)$.
- (b) Let A be a C^* -algebra and let I be a closed ideal in A. Denote the inclusion map $I \to A$ by ι and the quotient map $A \to A/I$ by π . Show that

 $0 \longrightarrow I \xrightarrow{\iota} A \xrightarrow{\pi} A/I \longrightarrow 0$

defines a short exact sequence of C^* -algebras.