SAARLAND UNIVERSITY Faculty of Mathematics and Computer Science Mathematics Department Prof. Dr. Roland Speicher Prof. Dr. Moritz Weber

M.Sc. Luca Junk

Operator Algebras Summer term 2022

Problem set 7 To be submitted by Monday, May 30, 2 pm.

Problem 23 (4 points). Let H be a complex Hilbert space.

- (a) Show that the involution $*: B(H) \to B(H)$ is continuous in the norm topology and the weak operator topology, but not in the strong operator topology.
- (b) Let $(x_{\lambda})_{\lambda \in \Lambda}$, $(y_{\lambda})_{\lambda \in \Lambda}$ be two nets in B(H) (over the same index set Λ) with $x_{\lambda} \to x$ and $y_{\lambda} \to y$ in the strong operator topology. Show that if $(x_{\lambda})_{\lambda \in \Lambda}$ is bounded, then $(x_{\lambda}y_{\lambda})_{\lambda \in \Lambda}$ converges strongly to xy. (This fails to be true in general if $(x_{\lambda})_{\lambda \in \Lambda}$ is not assumed to be bounded. A counterexample may be found in the book A Hilbert Space Problem Book by Paul Halmos.)

Problem 24 (4 points). Let *H* be a complex Hilbert space and let $S, T \subseteq B(H)$ be subsets with $S \subseteq T$.

- (a) Show that the commutant $S' \subseteq B(H)$ of S is a weakly closed unital subalgebra.
- (b) Show that if $S = S^*$, then the commutant $S' \subseteq B(H)$ of S is a strongly closed unital *-subalgebra (and hence a von Neumann algebra).
- (c) Show that $S \subseteq S''$ and $T' \subseteq S'$. Deduce that S''' = S'.

Problem 25 (4 points). Let H be a complex Hilbert space.

(a) Consider a strongly continuous linear functional $\varphi : B(H) \to \mathbb{C}$. Show that there are $n \in \mathbb{N}$, vectors $\xi_1, \ldots, \xi_n \in H$ and some C > 0 such that

$$|\varphi(x)| \le C\left(\sum_{i=1}^n ||x\xi_i||^2\right)^{1/2} \quad \text{for all } x \in B(H)$$

- (b) Let $\varphi : B(H) \to \mathbb{C}$ be a linear functional. Prove that the following statements are equivalent:
 - (i) φ is continuous with respect to the weak operator topology.
 - (ii) φ is continuous with respect to the strong operator topology.
 - (iii) There are $n \in \mathbb{N}$ and vectors $\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_n \in H$ such that

$$\varphi(x) = \sum_{i=1}^{n} \langle x\xi_i, \eta_i \rangle$$
 for all $x \in B(H)$

Please turn the page.

Hint: Prove that (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i). For proving (ii) \Rightarrow (iii), use (a) and consider the Hilbert space $K \subseteq H^n$ that is given as the closure of $K_0 \coloneqq \{(x\xi_1, \ldots, x\xi_n) \mid x \in B(H)\}$; show that the assignment $(x\xi_1, \ldots, x\xi_n) \mapsto \varphi(x)$ is well-defined on K_0 and extends to a continuous linear functional $\psi : K \to \mathbb{C}$; finally apply the Riesz representation theorem to ψ .

Problem 26 (4 points). Show that every element of a unital C^* -algebra can be written as a linear combination of at most four unitaries.

Hint: Consider first the case of selfadjoint elements of norm less or equal than one and use the continuous functional calculus.