SAARLAND UNIVERSITY Faculty of Mathematics and Computer Science Mathematics Department Prof. Dr. Roland Speicher Prof. Dr. Moritz Weber M.Sc. Luca Junk

Operator Algebras Summer term 2022

Problem set 9 To be submitted by Monday, June 13, 2 pm.

Let H be a complex Hilbert space.

Problem 31 (4 points). Let $M \subseteq B(H)$ be an abelian von Neumann algebra and $0 \neq \xi \in H$ a cyclic vector for M. Let $A \subseteq M$ be a unital C^* -subalgebra which is dense in the strong operator topology. Let μ be a Radon measure on X := Spec(A) and $\chi : A \to C(X)$ be the Gelfand isomorphism. Assume

$$\langle \chi^{-1}(f)\xi,\xi\rangle = \int_X f(x) \ d\mu(x), \qquad \forall f \in C(X)$$

- (a) Show that $U_0: C(X) \to H, U_0 f := \chi^{-1}(f)\xi$ satisfies $||U_0 f||_H = ||f||_{L^2(X,\mu)}$
- (b) Show that U_0 extends to a unitary $U: L^2(X, \mu) \to H$.
- (c) Show that $U^*\chi^{-1}(f)U = M_f$ for all $f \in C(X) \subseteq L^{\infty}(X,\mu)$ (where $M_f \in B(L^2(X,\mu))$ is the multiplication operator with symbol f) and conclude that

$$A \cong U^* A U = \{ M_f \mid f \in C(X) \} \cong C(X)$$

Problem 32 (4 points). Suppose H is separable and let $M \subseteq B(H)$ be an abelian von Neumann algebra. Show that there exists a single selfadjoint operator $a \in M$ which generates M, i.e. $\{a\}'' = M$.

Hint: Choose a sequence of projections $(p_n)_{n \in \mathbb{N}}$ in M which is strongly dense in the set of all projections in M (why does such a sequence exist?) and consider the operator $\sum_{n=0}^{\infty} 3^{-n} p_n$. You may use without proof the fact that the unit ball of B(H) is separable and metrizable in the strong operator topology.

Problem 33 (4 points). Let $M \subseteq B(H)$ be a von Neumann algebra and let $(p_i)_{i \in I}$ be an arbitrary family of projections in M. The *supremum* of the family $(p_i)_{i \in I}$ is the projection onto the subspace

$$\overline{\operatorname{span}}\left(\bigcup_{i\in I}p_iH\right)\subseteq H$$

and is denoted by $\bigvee_{i \in I} p_i$. Show that $\bigvee_{i \in I} p_i \in M$.