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Motivation

* Languages are wonderful tools to communicate, most likely unique to
human beings.

* There are about 6000-8000 languages in the world (depending on
how you count them).

* Why languages are so diverse? Is this variability functional for
communication?

* Are there some languages more expressive than others? And easier
to learn?

The faculty of language seems to be a prerogative of human beings. Some scholars,
most notably, Chomsky, thinks that the ambiguity of languages makes them
unsuitable as communication tools: in this perspective, languages serve to the
primary function of thinking, communication being a sort of by-product. However, the
ambiguity of languages can be solved by analyzing them in context i.e., taking into
account the situation(s) in which linguistic utterances are produced. From this
perspective, we will analyze languages for what we consider their primary function
i.e., communicating something in a given context.

Our wonderful tool is multiplied for about 6000-8000 times, giving rise to the biblical
Babel tower; only very few skilled and devoted persons can master dozen of
languages and most of the time we have to rely on so-called linguae francae i.e.,
global languages such as English, French and Spanish. But why and how languages are
so dramatically different, if they serve the common purpose of communication and
the cognitive faculties are the same for all human beings? The reason is simple:
culture and historical matters. Languages are human tools and like other human tools
such as hammers, roads and spaceships are different implementations of the same
blueprint.

Setting apart offensive ideas such as ‘the language X is better/worser/more
musical/less cacophonic than language Y’, we can ask ourselves whether some




languages are more easier to learn than others, or more expressive than other with
respect to certain domains of meanings or functions. Again, this is probably rooted in
human cultures. When it comes to learnability, global languages, standardized
languages and pidgins are easier to learn simply because they are evolved to be
spoken by large human communities. As for expressivity, think of the classic and
controversial example of Eskimo’s several words for snow; despite being exaggerated
by journalists and non-scholars, it is indeed true that Inuit (and not Eskimo, which
doesn’t exist as a single language) languages have more unrelated roots as well as
derivatives for snow than English, indicating that snowy landscapes perhaps require
more words to communicate snow-related things. For instance, ganik snow falling
aputi snow on the ground pukak crystalline snow on the ground (see
https://www.thecanadianencyclopedia.ca/en/article/inuktitut-words-for-snow-and-
ice).



Motivation

A convenient way to measure the amount of information encoded in
languages is offered by information-theoretic metrics, which use
computational models of languages to represent linguistic corpora in
order to quantify the complexity of linguistic structures across
languages.

Our seminar thus lays at the crossroads of different disciplines, namely:
* Information theory

* Computational linguistics

* Corpus linguistics

* Linguistic Typology

Besides cultural and historical reasons for language complexity (learnability and
expressivity), we may want to find an objective way to measure this complexity.
Metrics of information i.e., how much information is carried by a given
communication systems (tools) are offered by the field of information theory.
Computational linguistics offers us model of representation for natural languages at
different levels of analysis, while corpus linguistics deals with the study of languages
from a usage-based and data-driven perspective, allowing us to handle actual
linguistic data and build up bottom-up theories on language. Since the focus of this
seminar is cross-linguistic, most of the proposed papers will focus on ‘classic’
problems from LT, such as how words are arranged at the sentence/phrase level, why
some morphological systems are more complex than others, what does constitute a
word, ...




Information theory: assumptions

* Human languages are rational communication systems i.e., they are
optimized to carry information (expressivity) while at the same they
keep the communicative effort reasonable (learnability).

* This rationality is pervasive in languages, acting at every level of
linguistic structure (from phonetics to the lexicon).




Finite sets of symbols in languages:

Information theory
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The founding paper of Information Theory (Shannon 1948), which you will see quoted
in every paper of our reading list, deals with tools such as the teletype (a sort of
ancient fax) and the telegraph. However, this can be easily extended to all tools:

* having a message transmitted from an information source i.e., the transmitter to a
destination i.e., the receiver, using a signal transmitted over a channel. The
channel can be more or less noisy i.e., disturbance over a telephone call, noisy
environment, distances, ...

* using a finite set of symbols: several aspects of languages can be approximated to
a finite set of symbols. For instance, we have a finite set of phonemes at the
phonetic levels, graphemes i.e., symbols/letters/ideograms at the ortographic
levels, morphemes at the derivational or inflectional levels. However, words are
not a finite set, as languages possess the so-called infinite productivity i.e., we can
invent new words from existing ones. We’'ll see how information-theoretic
measures deal with potentially-infinite set of symbols.




Information theory: Shannon’s entropy

The amount of information of a given system (its informativity) is
quantified in terms of entropy, expressing the degree of uncertainty:

H(X)=- Z P(x;)logy P(z;)

where n is the size of the set of possible items and P the probability of
each item composing the data set.

Given a (more or less) finite set of items and a message (system) transmitted over a
channel, we can measure the quantity of information contained in the message by
using entropic measures. Entropy is based on the observed probabilities of the items
composing the message (the data set) and is expressed as the sum of the product of
the probability of each item multiplied by the inverse logarithm of the probability of
each item.




Information theory: Shannon’s entropy

For instance, let’s take the first class of nominal declension in Latin (N=12):

Nom Ros-a Rosa-ae * How much is the entropy of the Latin
inflectional system, restricted here to

Gen Ros-ae Ros-arum .
the first nominal class?
Dat Rosa-ae Ros-1s
Acc Ros-am  Ros-as Let’s begin by counting the different
Voc  Rosa Ros-ae realization for each cell i.e., how many types
= - of inflectional endings we have for twelve
Abl Ros-a Ros-Is

total tokens (N) ?

Let’s take the first class of Latin nominal declension, the very famous rosa-rosae-
rosae. There are twelve possible cells in the paradigm (six cases X 2 numbers), but
four endings are repeated across the paradigm, with the following distribution:

-a=2

—ae =4
—am=1

-a (long!) =1
—arum =1
-1s =2
-as=1

We have then seven different types of inflectional endings: this is n of the sum,
representing the size of our set.




Information theory: Shannon’s entropy

We now assign probability values to the inflectional endings:

. reqg(type
Nom Ros-a0.17 Rosa-ae 0.33 p(zt(gm) — M
N

Gen Ros-ae 0.33 Ros-arum 0.08

and calculate the entropy as:
Dat Ros-ae 0.33 Ros-is 0.17

— H = —(0.17 x logy(0.17) + 0.33 x log,(0.33) + 0.08 x log,(0.08) + 0.08 x
Acc Ros-am Ros-as 0.08 10g,(0.08) + 0.08 x log,(0.08,2) + 0.17 x log,(0.17)) = 2.56
0.08

Voc Ros-a0.17 Ros-ae 0.33 * the amount of information for the first
o o T nominal declension of Latin is 2.56 bits

Probabilities are given by the simple equation: number of tokens for each type/ total
number of tokens (maximum likelihood, or ML).
Recall the frequency of types and the total number of tokens = 12

-a=2

—ae =4
—am=1

-a (long!) =1
—arum =1
-1s =2
-as=1

So, the amount of information for the first nominal declension of Latin is quantified in
2.56 bits. We can compare this value to other nominal paradigms in Latin or in other
languages.

But we can also quantify the entropy for a given inflectional ending and compare it
with values from other endings.




Information Theory: Surprisal

A related entropic measure is Surprisal, which is focused on single
items in a given context:

* Word in phrases, sentences, texts, collection of texts;
* Phonemes in phonetic inventories; g
* inflectional endings in paradigms;

S(x) = ~log, p(x)

iy,
How much are we surprised to find the item x, given its probability in
context?

information content, self-information, surprisal, or Shannon information
(Wikipedia)
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Information theory: Surprisal

a__ * What is the surprisal of the vocative plural?

Nom

Gen

Dat

Acc

Voc

Abl

Ros-a 0.17

Ros-ae 0.33

Ros-ae 0.33

Ros-am
0.08

Ros-a 0.17

Ros-a 0.08

Rosa-ae 0.33
S(voe.pl) = —log, p(voc.pllinfl.paradigm) = 1.59

Ros-arum 0.08 . .
* And of the singular accusative?

Ros-1s 0.17
S(acec.sg) = — log, p(ace.sglinfl.paradigm) = 3.64

gEd
Kinder

Ros-1s 0.17

Ros-as 0.08

The inflectional endings of vocative plural, as well as other cases that use —ae is less
difficult to learn/memorize in terms of information of the singular accusative, or
other cases that use inflectional endings only attested once in the paradigm.
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Information theory: Local informativity vs.
(General) informativity

* Surprisal is a theoretic measure providing the local informativity of an
item in a particular context = contextual informativity

* General informativity refers to the entropy of an item found in every
context = informativity

* They can differ a lot! For instance, /d/ in sudden has an high
contextual informativity. However, if we measure the entropy of /d/ in
every occurrence of sudden in the Buckeye corpus, we discover that
/d/ has indeed a low general informativity (Cohen-Priva 2015:248-
249)

Local = contextual informativity

General informativity = informativity

Cohen-Priva 2015 will be discussed on December, the 17t It is a paper on phonetics,
whose main claim is that phonetic segments with low entropy = low information are
deleted or shortened. Hence ['sadan] (alone) vs. [san ] (across the corpus)
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Information theory: Average Surprisal

Surprisal can be averaged on the probabilities of the same item in
different contexts:

1
|lunit|

AvS(unit) = Z — log, p(unit;|context;)
i
where unit is the number of different contexts.

The best example here are probably words, which seldom occur
alone...

Lonely

A measure that take into account general informativity is average surprisal. We
calculate the average of the surprisal for each different context.

Of course, it’s really important what we take for unit, representing the window in
which we observe the entropic measures. We will come back to the concept of unit
when we’ll approach computational models.




Information theory: Average Surprisal

Example: (Degaetano-Ortlieb & Teich 2019:13-14)

The word book compare in the following contexts, for a total number of
10 tokens ( = times):

* Jane reads the book. Frequency: 8 times
* Jane bought the book. Frequency: 2 times
What is the surprisal of ‘book’ given the two contexts?

1
AvS(book) = 5(—[092])(0.8)) + (—logep(0.2)) = 1.32

Let’s take the example discussed in Degaetano-Ortlieb and Teich 2019, which is the
second paper of our reading list and is about the development of scientific English
over nearly 4 centuries. Studies as such really need to take the context into account,
in order to measure the surprisal of a given word in different contexts.

The surprisal of book given the first context is quite low, i.e. —log2(8/10) = 0.32 bit,
while in the second context is high i.e., -log2(2/10) = 2.32 bits

What is the surprisal of book given the two contexts?
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Information theory: some problems

In order to work as expected, information-theoretic measures should
be applied to a data set meeting the following conditions:

* finiteness: a finite set of symbols (letters, phonemes, morphemes
...words!); (cfr. slide no.6)

* stationarity: the probability of a preceding item doesn’t influence the
probability of a following item.

Tentative solutions:
* set a minimum size for data
* use estimators, which approximates the probability of words.

Bentz et al. (2017):4

Either one or both conditions are not met in language systems. The finiteness
condition is easier met for phonological and morphological systems as well as for
some syntactic constructions (the set of symbols is finite and you’ll probably
encounter all phonemes/morphemes/syntactic constructions in a decent corpus), but
stationarity is hardly met as language symbols are repeated. This tends to
overestimate the entropy of given items, as we assume that the data set we are
studying is much more complex than it actually is.

In order to find a reasonable number of different words (=types) we will have to take
corpora with more than 50K of tokens.

As for stationarity, you’ll find that authors use estimators to ‘correct’ the probability
of words: these methods are clearly beyond the scope of this course, it’ll suffice to
acknowledge their role. In order to overcome the probability problem, one paper
uses the Kolmogorov complexity, which refers to individual objects and not to objects
as member of a set (Geertzen et al. 2017:32-33).
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Information theory: Relative Entropy (KLD)

* Useful when comparing times slides in a diachronic corpus or
translations of the same text;

* How much does the entropy of the data set A fit the entropy of the
data set Bi.e., how much the probability distributions of the two
data sets coincide?

Kullback-Leibler Divergence:

p(item;|A)
p(item;|B)
IfA=B,KLDis 0

KLD(A||B) = Zp(itemAA) log,

When comparing different linguistic scenarios such as time slides in a diachronic
corpus or translations of the same text, it’s useful to have measure of relative
entropy.

KLD compares the probability distributions of the data set A with the data set B by
predicting how many additional bits are necessary ‘to encode a given data set A when
a (non-optimal) model based on a data set B is used (Degaetano-Ortlieb & Teich
2019:10).
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Information theory: Relative Entropy (KLD)

Given the following original passage (along with probabilities), calculate
the KLD for its German, Italian, French or English translations:

“Macondo (0.04) era (0.04) entonces (0.04) una (0.04) aldea (0.04) de
(0.18) veinte (0.04) casas (0.04) de (0.18) barro (0.04) y (0.04)
cafiabrava (0.04) construidas (0.04) a (0.04) la (0.04) orilla (0.04) de
(0.18) un (0.04) rio (0.04) de (0.18) aguas (0.04) diafanas (0.04)” (Garcia
Marquez, Cien afos de Soledad)

Poll: Which language do we choose?
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Information theory: Conditional entropy

* How much does the entropy of an item c influence the entropy of
another item x?

H(zlc) = =Y > P(x,c)log, P(z|c)

* Useful when x and ¢ are members of the same set e.g., forms of
inflectional paradigms, collocations, ...

* However, the influence is purely statistical i.e., it does not depend on
the form/meaning of the items

We have already seen that linguistic items are hardly met alone, thus constituting a
problem for information theoretic measures intended for stationarity systems. We
can take a further step, and ask how much the entropy of the item ¢ conditions the
entropy of the item x. It is particularly useful in paradigmatic systems, in which the
user (speaker) has to choose between a datasets in which items are members. Since
it’s just statistics, it doesn’t take into account the fact that some forms are easier to

connect than others, simply because they show some resemblance i.e., the dat.sg. =
gen.sg or singular forms have all ending vowels save the accusative, ...

18



Information theory: Conditional entropy

m__ * How much information we need to know

Nom  Rosa0.17 Rosa-ae0.33 the accusative singular, if we already know
the genitive plural?

Gen Ros-ae 0.33 Ros-arum 0.08
H(ace.sg.|gen.pl) = —(0.08 x log,(0.08) + 0.08 x log,(0.08) = 0.58
Dat Ros-ae 0.33 Ros-1s 0.17
Acc Ros-am Ros-as 0.08 . . .
0.08 * And if we know the dative singular (= more
likely?)
Voc Ros-a 0.17  Ros-ae 0.33
H(dat.sg.lacc.sg.) = —(0.08 x log,(0.08) + 0.33 x log,(0.33) = 0.81
Abl Ros-a 0.08 Ros-is 0.17

If we already know a less likely ending, say, the genitive plural, it will take us little
effort to fill the paradigm: just need 0.58 bits for the accusative singular. Taken alone,
the dative singular requires 1.59 bits (remember the Kinder-Uberraschung slide).

On the other hand, knowing more likely endings, such as the dative singular, require
more effort to know the dative singular, i.e., 0.81 bits
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Different levels of analysis requires different
languages models:

* Lexicon: we need to capture the links between
words, so we will use string of words, or n-gram
based models:

“The quick brown fox jumps over the lazy dog”
Unigram: the, quick, brown, fox, jumps, ...
Bigram: the quick, quick brown, brown fox, ...
Trigram: the quick brown, quick brown fox,

Four-gram: the quick brown fox, quick brown fox
jumps

- ‘USED T0 TEST TYPEWRITERS /IND COMPUTER KEYBOARDS -

... the limit is somewhat set to five-gram

In order to use our information-theoretic measures we need to represent the portion
of language we are studying i.e. the corpus with a model. This is necessary as we
have to set a space in which observe the probabilities of our set. For instance, the
Macondo example from the last slide uses the unigram model.




Computational
linguistics:
models

N-gram based models are also good for other levels in which
items are found in short-range contexts, such as:

Phonetics: strings of phones

[nootis] [nowas |
uniphone: n, o, u, t or zero,...
biphone: no, ou, ot or oy, ...
triphone: nou, oot, ot or vss, ...
(Cohen-Priva 2015)
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Computational
linguistics:
models

What about syntax?

N-gram models might work, but they are
somewhat limited to syntactic relations with a
fixed length:

* Trigram of parts of speech: noun—preposition—
noun, article-adjective-noun, ... (Degaetano-
Ortlieb & Teich 2019)

* Collocations such as the trigram in
Kick the (bucket[ball|door[dog|can[habit]...)

N-gram viewer at Google: https://books.google.com/ngrams
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Computational
linguistics:
models

Summing up

N-gram: gram in a context of N-1
gram

unigram: just the gram itself

Bigram: the gram plus one preceding
gram

Trigram: the gram plus two
preceding gram

Good for lexicon, phonetics,
morphology. Problematic for syntax.
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Computational
linguistics:
models

Discourse analysis: topic modelling:
* Topic = what is this text about?

* Probability of a word in a document
given a topic

Semantics/syntax: word embeddings:

* Embeddings = (weighted) probabiliy
of a word given its context

* Words are represented as vectors
populated by the probabilities of their
contexts

* Eg. . kick(the bucket:0.02, the
ball:0.04, the door: 0.03) vs. push(the
door: 0.04, the button: 0.02, the
limits: 0.04)

If we want to move the discourse analysis, we’d better employ a computational
model taking into account a topic as wells. Topics are usually very general, for
instance in scientific languages can be names of disciplines: Physiology, Chemistry,

Geography, ...

Vector-based models are good for doing semantics and, to some extent, investigate
problems from syntax. A vector-based model is built by taking the probabilities of
words in different context. For instance, let’s take the verb ‘kick’ and ‘push’, which are
represented by vectors populated by the probabilities of ‘the bucket’, ‘the ball’, ‘the
door’ and so on. We can for instance infer their similarity (to a certain extent...) as

they share at least one context, ‘the door’.
These two models are used in Bizzoni et al. 2020.
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