Name:	Computational Methods for Epigenome Analysis (Special Lecture Bioinformatics)
Format:	Lecture and Hands-on practical workshop
Semester:	SS 2021
Lecturers:	Jun.Prof. Dr. Fabian Müller, Prof. Dr. Jörn Walter, Dr. Abdulrahman Salhab, Dr. Kathrin Kattler, Dr. Gilles Gasparoni
Language:	English
Admission	Places are limited and student will be selectively admitted: Basic knowledge in R is required as well as basic knowledge in genomics and epigenetics. Bioinformatic Master students who attended the lecture "Principles of Epigenetics" and successfully passed the examen will be given priority. Non- bioinformatics students can be accepted on an individual basis if they can show that they have sufficient basic knowledge in R.
Time:	The lecture and course will be held between August 2 nd and– August 17 th 2021 in an online format (via MSTeams).
Schedule:	 2nd to 4th August six theoretical lectures (90 minutes each) introducing into the biological and bioinformatic background. 9th of August, written examen (in presence,1.5 hours) in Building A4.3. 10th until 13th August (9am – 5pm) a four day Hands on workshop. 17th of August Presentation of results. 21st of August: Protocols handed in. All Lectures, the course and the presentation will be held via MSTeams - unless Corona-restrictions allow the presence on
Cradita	the campus.
Credits:	4
Entrance requirements:	Students should have a basic knowledge in modern genomics and principles of epigenetics. They should have basic skills for script-based programming using the R language. The course will be limited to 20 (bioinformatics) students. Students who attended the lecture "Principles of Epigenetics" will be given priority. Non-bioinformatics students will be accepted on an individual basis if they can show that the requirements are met.
	 What can you do to prepare for the lecture? Refresh your knowledge on epigenetic principles Refresh your knowledge on Next-Generation Sequencing technology Familiarize yourself with the UNIX shell and the R programming language

Aims/Competences to be developed:	This course offers a practical introduction to bioinformatics methods and tools used for NGS-based (NGS = next generation sequencing) epigenome analysis. The lecture will refresh the students' knowledge on epigenetic gene regulation, introduce a series of experimental methods to profile the epigenome and introduce into the theoretical background of bioinformatic methods and software tools used for data processing, quality control, exploratory analysis, differential analysis and integration of multiple data modalities. Four epigenomic data modalities will be discussed in detail: gene expression, DNA methylation, chromatin accessibility, histone modifications. The theoretical knowledge conveyed in the lecture will be solidified in a hands-on workshop in which the students will employ the introduced methods. Here, the students will work in groups of 2-3, each addressing one of the four epigenetic
	modalities mentioned above. Students will present their results in a final presentation at the end of the course.
Content:	 Introduction to epigenetic gene regulation Experimental techniques and bioinformatic analysis for gene expression (RNA-seq) Experimental techniques and bioinformatic analysis for DNA methylation (bisulfite-seq, microarrays, enrichment-based methods, etc.) Experimental techniques and bioinformatic analysis for chromatin accessibility (ATAC-seq, DNase-seq, NOMe-seq, etc.) Experimental techniques and bioinformatic analysis for histone modifications (ChIP-seq, CUT&RUN, etc.) Integrative data analysis: Dimension reduction, clustering, differential analysis, segmentation, imputation Emerging epigenome profiling technologies (including single-cell and multiome methods)
Assessment/Exams:	Students need to pass a written exam, based on the lecture content, prove that they successfully participated in the workshop by handing in a notebook-based protocol and give a 20-minute final presentation. The final grade will be given based on the exam and a check on the above criteria.
Literature:	Lecture slides, workshop handouts and problem sets are available on the course website and they will be disseminated in MS Teams.